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Math E-21c – Continuous Dynamical Systems – Part 2 

Solving systems using diagonalization and evolution matrices 
Given an n n×  matrix A, suppose S is a change of basis matrix corresponding to either diagonalization or 

reduction to Jordan Canonical Form. We will have 1− =S AS B  in this case, where B is diagonal or otherwise in 

simplest form. We then calculate 1−=A SBS , and substitution gives 1d
dt

−=x SBS x . 

Multiplying on the left by S-1 and using the basic calculus fact that ( )d d
dt dt= xMx M  for any (constant) 

matrix M, we have 
1

1 1( ) ( )dd
dt dt

−
− −= =S xxS B S x . If we write [ ]1−= =u S x x

B
, where B is the new, preferred 

basis, then in these new coordinates the system becomes d
dt =u Bu , but now the system will be much more 

straightforward to solve. 

The diagonalizable case 
In the case where B is a diagonal matrix with the eigenvalues of A on the diagonal, the system is just 
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To revert back to the original coordinates, we write =x Su , so 1( ) ( ) [ ] (0) [ ] (0)t tt t e e −= = =B Bx Su S u S S x . If 
we denote the evolution matrix for the system in its original coordinates as [ ]te A  where ( ) [ ] (0)tt e= Ax x , then 
the previous calculation gives the simple relation 1[ ] [ ]t te e −=A BS S . 

In other words, the evolution matrices for the solution are in the same relationship as the matrices A and B, 
namely A = SBS-1. This pattern is very easy to remember, and this same pattern will again be the case where B 
is not diagonal but where the corresponding evolution matrix is still relatively easy to calculate. 

1 1[ ] [ ]t te e− −= ⇒ =A BA SBS S S , and the solution of the original system will be ( ) [ ] (0)tt e= Ax x . 

The complex eigenvalue case 

Suppose we want to solve a system of the form d
dt =
x Ax  where A is an 2 2×  real matrix with a complex 

conjugate pair of eigenvalues a ibλ = +  and a ibλ = − . There are several reasonable ways to proceed, but they 
all come down to determining the evolution matrix [ ]te A  so that we can solve for ( ) [ ] (0)tt e= Ax x . 

First, put the system into (real) normal form. 

Use the complex eigenvalue a ibλ = +  to find a complex eigenvector i= +w u v . If we change to the basis 

{ , }v u  then, using the change of basis matrix [ ]=S v u , we’ll get 1 a b
b a

− − = =   
S AS B , a rotation-dilation 

matrix. Noting, as before, that 1 1[ ] [ ]t te e− −= ⇒ =A BA SBS S S , we need only to determine [ ]te B . 
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Second, find the evolution matrix for the (real) normal form. 

In fact, if a b
b a

− =   
B  then cos sin[ ] sin cos

t at bt bte e bt bt
− =   

B , a time-varying rotation matrix with exponential 

scaling. For any initial condition (except the zero vector), this yields a trajectory that spirals out in the case 
where Re( ) 0aλ = >  (look to the original vector field to see whether it’s clockwise or counterclockwise), or a 
trajectory that spirals inward toward 0 in the case where Re( ) 0aλ = < . 

To derive this expression for [ ]te B , make another coordinate change with complex eigenvectors starting 

with a b
b a

− =   
B . We know this has the same eigenvalues of A, namely a ibλ = +  and a ib= −λ . Use 

a ibλ = +  to get the complex eigenvector 1
i

 =  − 
w . The eigenvalue a ib= −λ  will then give the eigenvector 

1
i
 =   

w . Using the (complex) change of basis matrix 1 1
i i

 =  − 
P , we have that 1 0

0
a ib

a ib
− + = =  − 

P BP D . 

It follows that (using Euler’s Formula as needed): 
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−B DP P . 

These calculations enable us to write down a closed form expression for the solution of this linear system, 

namely ( ) [ ] (0)tt e= Ax x  where 1 1cos sin[ ] [ ] sin cos
t t at bt bte e e bt bt

− −− = =   
A BS S S S . However, the more important result 

is the ability to qualitatively describe the trajectories for this system by knowing only the real part of the 
eigenvalues of the matrix A and the direction of the corresponding vector field (clockwise vs. 
counterclockwise). 

Repeated eigenvalues (with geometric multiplicity less than the algebraic multiplicity) 

Suppose we want to solve a system of the form d
dt =
x Ax  where A is a non-diagonalizable 2 2×  real matrix 

with a repeated eigenvalue λ . We’ve seen that in this case, we can always find a change of basis matrix S such 

that 1 1
0
λ

λ
−  = =   

S AS B . As in the previous two cases, 1 1[ ] [ ]t te e− −= ⇒ =A BA SBS S S  and it comes down 

to finding [ ]te B . This is perhaps most easily done by explicitly solving the corresponding differential equations. 

In the new coordinates, this system translates into 
1

1 2

2
2

du u u
dt

du u
dt

λ

λ

 = + 
 
 =
 

. The second equation is easily solved to get 

2 2( ) (0)tu t e uλ= . We can guess a solution for the first equation of the form 1 1 2( ) t tu t c te c eλ λ= + . Differentiating 
this and substituting into the first equation, we get 1 2 1 2 2( ) ( ) (0)t t t t t tc e te c e c te c e e uλ λ λ λ λ λλ λ λ+ + = + + . 
Comparing like terms, we conclude that 1 2 (0)c u= . Substituting t = 0, we further conclude that 1 2(0)u c= . 
Putting these results together, we get 1 2 1 1 2( ) (0) (0) (0) (0)t t t tu t u te u e e u te uλ λ λ λ= + = + . We therefore have that 

1 1 2 1

2 22

( ) (0) (0) (0)( ) (0)( ) (0)(0) 0 0

t t t t t t

t t t
u t e u te u ue te e tet u t ue u e e

λ λ λ λ λ λ

λ λ λ

     +   = = = =               
u u  
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So, [ ]
0

t t
t

t
e tee

e

λ λ

λ

 
=  
 

B  in this case and the solution is given by 1 1( ) [ ] (0)
0

t t
t

t
e tet e

e

λ λ

λ
− − 

= =  
 

Bx S S S S x . 

An alternate method of deriving this result may be found in the homework exercises. 

Similar calculations enable us to deal with cases such as a repeated eigenvalue where the geometric 
multiplicity is 1 and the algebraic multiplicity is 3 (or even worse). 

Finally, an actual system may exhibit several of these qualities – one or more complex pairs of eigenvalues, 
repeated eigenvalues, and distinct real eigenvalues. The Jordan Canonical Form of the matrix for such a system 
can be analyzed block by block and each of the above solutions applied within each block to determine the 
evolution matrix for the entire system. 

The Main Idea: 

Given a system of 1st order linear differential equations d
dt =
x Ax  with initial conditions (0)x , we use 

eigenvalue-eigenvector analysis to find an appropriate basis 1{ , , }n= v vB   for Rn and a change of basis 

matrix 1 n

 ↑ ↑
 =
 
↓ ↓  

S v v  such that in coordinates relative to this basis ( 1−=u S x ) the system is in a standard 

form with a known solution. Specifically, we find a standard matrix 1[ ] −= =B A S ASB , transform the system 

into d
dt =u Bu , solve it as ( ) [ ] (0)tt e= Bu u  where [ ]te B  is the evolution matrix for B, then transform back to the 

original coordinates to get ( ) [ ] (0)tt e= Ax x  where 1[ ] [ ]t te e −=A BS S  is the evolution matrix for B. That is 
1( ) [ ] [ ] (0)t tt e e −= =A Bx S S x . This is easier to do than it is to explain, so here are a few illustrative examples: 

The diagonalizable case 

Problem: Solve the system 
5 6

3 4

dx x y
dt
dy x y
dt

 = − 
 
 = −
 

 with 

initial conditions (0) 3, (0) 1x y= = . 

Solution: In matrix form, we have d
dt =
x Ax  where  

5 6
3 4

− =  − 
A  and 3(0) 1

 =   
x . We start by finding 

the eigenvalues of the matrix: 
5 6

3 4
λλ λ
− − =  − + 

I A , and the characteristic 

polynomial is 2( ) 2 ( 2)( 1)p λ λ λ λ λ= − − = − +A . 
This gives the eigenvalues 1 2λ =  and 2 1λ = − . The 

first of these gives the eigenvector 1
2
1
 =   

v , and the second gives the eigenvector 2
1
1
 =   

v . So we have 

1 1 1

2 2 2

= λ 
 = λ 

Av v
Av v . The change of basis matrix is 2 1

1 1
 =   

S  and with the new basis (of eigenvectors) 
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1 2{ , }= v vB we have 1 1

2

0 2 0[ ] 0 0 1
−    = = = =   −  

A S AS DB

λ
λ , a diagonal matrix. [There is no need to carry 

out the multiplication of the matrices if 1 2{ , }= v vB  is known to be is a basis of eigenvectors. It will always 
yield a diagonal matrix with the eigenvalues on the diagonal.] 

The evolution matrix for this diagonal matrix is 
2 0[ ]
0

t
t

t
ee

e−

 
=  
 

D , and the solution of the system is: 

2 2
1

2

2
2 2

2 1 2

2 1 0 1 1 3 2 2( ) [ ] (0) [ ] (0) 1 1 1 2 1 10

4 2 12 21 12

t t t
t t

t t t

t t
t t t t

t t

e e et e e e e e

e e e e e ee e

−
−

− −

−
− −

−

   −       = = = =   − −                 
 −    = = − = −     −     

A Dx x S S x

v v
 

The complex eigenvalue case 

Problem: Solve the system 
2 5

2 4

dx x y
dt
dy x y
dt

 = − 
 
 = −
 

 with 

initial conditions (0) 0, (0) 1x y= = . 

Solution: In matrix form, we have d
dt =
x Ax  where 

2 5
2 4

− =  − 
A  and 0(0) 1

 =   
x . We again start by 

finding the eigenvalues of the matrix: 
2 5

2 4
λ − λ − =  − λ + 

I A , and the characteristic 

polynomial is 2 2( ) 2 2 ( 1) 1p λ = λ + λ + = λ + +A . 

This gives the complex eigenvalue pair 1 iλ = − +  
and 1 iλ = − − . We seek a complex eigenvector 

for the first of these: 3 5 0
2 3 0

i
i

α
β

− +     =     − +     
 

gives the (redundant) equations ( 3 ) 5 0i α β− + + =  and 2 (3 ) 0i− + + =α β . The first of these can be written as 
5 (3 )iβ α= − , and an easy solution to this is where 5, 3 iα β= = − . (We could also have used the second 
equation – which is a scalar multiple of the first. The eigenvector might then have been different, but 

ultimately we’ll get the same result.) This gives the complex eigenvector 5 5 0
3 3 1i ii
     = = + = +     − −     

w u v . 

We have shown that with the specially chosen basis { , }= v uB , the new system will have standard matrix 
1[ ] a b

b a
− − = = =  

A S AS BB  where a is the real part of the complex eigenvalue and b is its imaginary part. 

We also showed that cos sin[ ] sin cos
t at bt bte e bt bt

− =   
B . In this example, 1a = −  and 1b = , [ ] 0 5

1 3
 = =  − 

S v u , 

1 1
5

3 5
1 0

− − =   
S , 1 1

1 1
− − =  − 

B , and cos sin[ ] sin cos
t t t te e t t

− − =   
B . The solution to the system is therefore: 
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1
5

0 5 cos sin 3 5 0( ) [ ] [ ] (0) 1 3 sin cos 1 0 1
t t te t tt e e t t

− − − −       = = =        −       
A Bx S S x

 

5
5sin 5cos 5 5sin

cos 3sin sin 3cos 0 cos 3sin
tte t t tet t t t t t

−− − −     = =     − + + −     
. That is, ( ) 5 sin

( ) cos 3 sin

t

t t
x t e t
y t e t e t

−

− −

 = −
 = − 

. 

Repeated eigenvalue case [with geometric multiplicity (GM) less than the algebraic multiplicity (AM)]: 

Problem: Solve the system 
4 4

dx y
dt
dy x y
dt

 = 
 
 = − +
 

 

with initial conditions (0) 3, (0) 2x y= = . 

Solution: In matrix form, we have d
dt =
x Ax  

where 0 1
4 4

 =  − 
A  and 3(0) 2

 =   
x . We again 

start by finding the eigenvalues of the matrix: 
1

4 4
λ − λ − =  λ − 

I A , and the characteristic 

polynomial is 2 2( ) 4 4 ( 2)p λ = λ − λ + = λ −A . 

This gives the repeated eigenvalue 2λ =  with 
(algebraic) multiplicity 2. We seek 

eigenvectors: 2 1 0
4 2 0

− α     =     − β     
 gives the 

(redundant) equations 2 0α −β =  and 

4 2 0α − β = . Therefore 2β = α , so we can choose 1
1
2
 =   

v  or any scalar multiple of this as an eigenvector, 

but we are unable to find a second linearly independent eigenvector. (We say that the geometric multiplicity 
of the 2λ =  eigenvalue is 1.) 

The standard procedure in this case is to seek a generalized eigenvector for this repeated eigenvalue, i.e. a 
vector 2v  such that 2( )λ −I A v  is not zero, but rather a multiple of the eigenvector 1v . Specifically, we seek a 
vector such that 2 1 2= + λAv v v . This translates into seeking 2v  such that 2 1( )λ − = −I A v v . That is, 

2 1 1
4 2 2

− α −     =     − β −     
. This gives redundant equations the first of which is 2 1α −β = −  or 2 1β = α + . 

If we (arbitrarily) choose 0α = , then 1β = , so 2
0
1
 =   

v . The fact that 1 1

2 1 2

2
2

= 
 = + 

Av v
Av v v  tells us that with the 

change of basis matrix 1 0
2 1
 =   

S , we will have 1 2 1[ ] 0 2
−  = = =  

A S AS BB . 

The standard form in this repeated eigenvalue case is a matrix of the form 1
0
λ =  λ 

B . (There are analogous 

forms in cases larger than 2 2×  matrices.) Note that we can write 1
0
λ = = λ + λ 

B I P  where 0 1
0 0
 =   

P . 
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There is a simple relationship between the solutions of the systems d
dt =
x Bx  and d

dt =u Pu , namely 

( ) ( )tt e tλ=x u . This is easily seen by differentiation: 

[ ( )] ( ) ( ) ( )t t t t t t t td d d
dt dt dte t e e e e e e eλ λ λ λ λ λ λ λ= = + λ = + λ = + λ = λ + = λ + =x uu u Pu u Pu Iu I P u I P u Bx  

together with the fact that (0) (0)=x u . 

Furthermore, solving d
dt =u Pu  is simple. If 1

2

u
u
 =   

u , then with 0 1
0 0
 =   

P  we have 1 2

2

( )
( ) 0

u t u
u t

 ′ = 
 

′ =  
. 

The second equation gives that 2 2 2( ) (0)u t c u= = , a constant. The first equation is then 1 2( ) (0)u t u′ = , so 

1 2 1( ) (0)u t u t c= ⋅ + . At 0t =  this gives 1 1(0)u c= , so 1 1 2( ) (0) (0)u t u u t= + ⋅ . Together this gives: 

1 1 2 1

2 2 2

( ) (0) (0) (0)1 1( ) (0) (0)( ) (0) (0)0 1 0 1
tu t u u t ut tt eu t u u

+ ⋅          = = = = =                  
Pu u u  

Therefore 1( ) (0) (0)0 1 0

t t
t

t
t e tet e

e

λ λ
λ

λ

  = =      
x x x , so 

0

t t
t

t
e tee

e

λ λ

λ

   =     
B  for 1

0
λ =  λ 

B . 

If we apply this to the problem at hand, we get 
2 2

2[ ]
0

t t
t

t
e tee

e
 

=  
 

B . The solution to the system is therefore 

2 2 2 2
1

2 2 2 2
1 0 1 0 3 3( ) [ ] [ ] (0) 2 1 2 1 2 40 2 2

t t t t
t t

t t t t
e te e tet e e

e e te e
−           = = = =          − −+          

A Bx S S x  

2 2 2 2
2

2 2 2 2 2
3 4 3 4 3 4

2 86 8 4 2 8

t t t t
t

t t t t t
e te e te te te te e e te

   − − − = = =     −− − −     
. That is, 

2

2
( ) (3 4 )
( ) (2 8 )

t

t
x t e t
y t e t

 = −
 = − 

. 

It’s worth noting that this can also be expressed as 2 23 1( ) 42 2
t tt e te   = −      

x . 

The phase portrait in this case has just one invariant (eigenvector) direction. It gives an unstable node which 
can be viewed as a degenerate case of a (clockwise) outward spiral that cannot get past the eigenvector 
direction. 

Moral of the Story: It’s always possible to find a special basis relative to which a given linear system is in its 
simplest possible form. The new basis provides a way to decompose the given problem into several simple, 
standard problems which can be easily solved. Any complication in the algebraic expressions for the solution is 
the result of changing back to the original coordinates. 

The standard 2 2×  cases are: 

Diagonalizable with eigenvalues 1 2,λ λ : 1

2

0
0
λ = =  λ 

B D  
1

2

0[ ] [ ]
0

t
t t

t
ee e

e

λ

λ

 
= =  

 
B D  

Complex pair of eigenvalues a ibλ = ± :  a b
b a

− =   
B   cos sin[ ] sin cos

t at bt bte e bt bt
− =   

B  

Repeated eigenvalue λ  with GM AM< :  1
0
λ =  λ 

B   1[ ] 0 10

t t
t t

t
e te te e

e

λ λ
λ

λ

   = =     
B  

In general, you should expect to encounter systems more complicated than these 2 2×  examples. 


