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Math E-21c – Continuous Dynamical Systems – Part 1 

Vector fields, Continuous Dynamical Systems, and Systems of 1st Order Linear Differential Equations 

Definition: A vector field in nR  is an assignment of a vector to every point in nR  (with the possible exception 

of some singular points). This can be viewed as a function 
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 where 1( , , )i nf x x  is 

the i-th component of the vector assigned to the point 1( , , )nx x . We can also write this more succinctly as 

1( )
( )

( )n

f

f

 
 =
 
 

x
F x

x
 . In practice we usually assume some reasonable properties such as that the component functions 

are continuous or differentiable except perhaps at a finite number of singular points. 

If we view the vector assigned to each point as a velocity vector associated with some smoothly varying 
system, a reasonable question to ask is this: Given a starting point 0x  (the initial condition), can we find a 
parameterized curve ( )tx  such that 0(0) =x x  and the velocity vector at any point on this parameterized curve 

matches the underlying vector field, i.e. ( ( ))d
dt t=x F x . This is equivalent to a system of (time-independent) first-

order differential equations, i.e. 
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. We are interested in knowing how a system defined in 

this way evolves over time for any given initial condition. This describes what we call a continuous dynamical 
system. We call the set of all such solution curves the flow of the dynamical system. 

If you imagine a vector field as describing a flowing liquid, then these parameterized curves simply describe 
what happens if you drop a particle into the flow and see where it goes as it carried by the flow. This is a good 
way to think about a continuous dynamical system even when the variables are describing such things as 
populations or economic variables rather than geometric coordinates. We’ll still refer to the solutions as the 
flow of the system even though there’s nothing physical about this flow. 

We are typically interested in the long-term behavior of such a system, but we often would also like to 
predict exactly where the particle will be after a specified time t, i.e. formulas for how the component functions 
evolve in time. In general, if the component functions of the underlying vector field are nonlinear, it’s very 
difficult to find a tidy formula for how the system evolves over time. The linear case, on the other hand, is 
completely solvable using matrix methods. 

Definition: A linear continuous dynamical system is a system of first-order differential equations of the form 
1

11 1 1

1 1
n

n n

n nn n

dx
dt

dx
dt

a x a x

a x a x

 = + +
 
 
 = + + 







. If  
1

n

x

x

 
 =
 
 

x  , then 

1
11 1 1 11 11 1

1 1 11 11n

n n

n nn n n

dx
dt

dx
dt

a x a x a a xd
dt a x a x a a x

  + +            = = = =         + +      

x Ax
 

     

 

 where 

11 11

11 11

a a

a a

 
 =
 
 

A


  



 is the matrix of coefficients. That is, d
dt =
x Ax  where A is an n n×  real matrix. 

Situation: You want to solve a system of first-order linear differential equations of the form d
dt =
x Ax  given 

some initial condition 0(0) =x x . How is this most efficiently accomplished? 
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Example 1: The simplest linear continuous dynamical system is the single equation dx
dt kx=  with initial 

condition 0(0)x x= . This is something we solved in basic calculus and yields exponential growth or decay 

(depending on whether 0k >  or 0k < ). Specifically, we write 1 dx
dtx k=  and integrate both sides to get 

ln ( )x t kt c= +  for some arbitrary constant c. [Many people choose to do this calculation as dx
x kdt=  and 

integrate both sides to get lndx
x kdt x kt c= ⇒ = +∫ ∫ .] In any case, exponentiating both sides gives 

( ) kt c c kt ktx t e e e ae+= = = , and we can remove the absolute value by allowing the constant a to be either positive 

or negative, so we get ( ) ktx t ae= . Using the initial condition 0(0)x x=  we see that 0(0)x a x= = , so the solution 

is 0( ) ktx t x e= . 

Uncoupled systems: We call a system uncoupled (or unlinked) if the rates of change of each of the variables do 

not depend on any of the other variables. In the linear case, this would mean a system of the form 
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with initial conditions 1(0), , (0)nx x . Note that such a system can be expressed in matrix form as d
dt =
x Dx  

where D is the diagonal matrix 
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. Solving this system is nothing more than solving the 

previous problem repeatedly with different rate constants and corresponding initial conditions. We get the 
solution 
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Note that when 0t =  this matrix is just the identity 
matrix which simply reflects the fact that 0t =  
corresponds to the initial conditions 0(0) =x x . Of 
greater interest is the fact that this time-varying matrix 
evolves over time to produce the flow emanating from 
any given initial condition. It is for this reason that we 
refer to this matrix as the evolution matrix for this 
uncoupled system. If we refer to this matrix as [ ]te D , a 
notation that is perhaps best not taken too literally, then 

the system d
dt =
x Dx  with initial conditions 0(0) =x x  

has solution ( ) [ ] (0)tt e= Dx x . 

A coupled system, i.e. a system of the form d
dt =
x Ax  where the matrix A is not diagonal, can often be 

solved by changing coordinates so that relative to some new basis (of eigenvectors) the system has a diagonal 
matrix. The tool at the heart of these methods is diagonalization or, in the case where a matrix cannot be 
diagonalized, finding an appropriate change of basis relative to which the underlying linear transformation has 
the simplest possible matrix representation (Jordan Canonical Form). The introduction of corresponding 
“evolution matrices” is a useful formalism for handling these general cases. 
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Problem: Solve the system 
5 6

3 4

dx x y
dt
dy x y
dt

 = − 
 
 = −
 

 with initial conditions (0) 3, (0) 1x y= = . 

Solution: In matrix form, we have d
dt =
x Ax  where 5 6

3 4
− =  − 

A  and 3(0) 1
 =   

x . If we use the PPLANE tool to 

get a sense of the underlying vector field, there are several things we might observe, but perhaps the most 
prominent features are the two lines passing through the origin one of which indicates growth (unstable) and the 
other decay (stable). Both of these are solution curves 
(trajectories) for this dynamical system, and the other 
trajectories appear to be some kind of superposition of 
these two prominent trajectories. 

We refer to these prominent lines as invariant directions. 
What characterizes each of them is the fact that the 
velocity vector field is parallel to each respective line. 

Note that if x is a position vector (from the origin) for any 
point on either of these lines, then at such a point we’ll 

have d
dt= =xv Ax x  (parallel). This means that λ=Ax x  

for some scalar λ . We refer to such a vector x as a 
characteristic vector or eigenvector for the matrix A, and 
we call the corresponding scalar λ  its characteristic 
value or eigenvalue. As we’ll see, if we can use these 
eigenvectors as a basis for a better coordinate system, this 
will be the key to uncoupling such a system. It’s easy to 
see that if x is any eigenvector then any scalar multiple of x is also an eigenvector, so the span of any such 
vector is an invariant direction or “eigenspace.” 

How do we find these eigenvalues and eigenvectors? We start by writing λ λ= =Ax x Ix  where I is the identity 
matrix corresponding to the system (in this case a 2 2×  identity matrix). We can then use some basic matrix 
algebra to write this as either ( )λ λ− = − =Ax Ix A I x 0  or ( )λ λ− = − =Ix Ax I A x 0 . So we are seeking a 
nonzero vector x that’s in the kernel of the matrix λ −I A . The only way this can happen is if the matrix λ −I A  
is not invertible (because if it was invertible the only solution would be the zero vector). We know that a simple 
criterion for invertibility of a square matrix is that its determine be nonzero, so to be not invertible means that 
its determinant must be zero. We refer to this as the characteristic polynomial of the matrix A, i.e. 

( ) det( )p λ λ= −A I A . Its roots are the eigenvalues, and once we find them we can find the eigenvectors. 

In this example, we start by finding the eigenvalues of the matrix: 5 6
3 4

λλ λ
− − =  − + 

I A . Its characteristic 

polynomial is 2( ) 2 ( 2)( 1)p λ λ λ λ λ= − − = − +A . This gives the eigenvalues 1 2λ =  and 2 1λ = − . Using the first 

of these gives, we seek a vector α
β
 =   

x  such that 2 5 6 3 6 0( ) 3 2 4 3 6 0
α αλ β β

− −         − = = =         − + −         
I A x . This 

gives redundant equations, but the requirement is that 3 6 0α β− + =  or, more simply, 2α β= . Since any 
multiple of an eigenvector is also an eigenvector, this gives us some flexibility, but simplest is better. If we 

arbitrarily take 1β = , then 2α =  and we get the eigenvector 1
2
1
 =   

v . Similarly, the second eigenvalue gives 
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the eigenvector 2
1
1
 =   

v . So we have 1 1 1 1

2 2 2 2

2= λ = 
 = λ = − 

Av v v
Av v v . The first corresponds to a growth direction and the 

second to a decay direction. 

These two vectors can be used to form the basis of a skew coordinate system relative to which the system will 
be uncoupled. Any position vector can be uniquely expressed as 1 1 2 2u u= +x v v , and therefore 

1 2
1 2 1 1 2 2 1 1 2 2 1 1 1 2 2 2( )du dud u u u u u udt dt dt

λ λ= + = + = + = +x v v A v v Av Av v v . Looking at the individual components 

we see that 1
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λ=  and 2
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λ=  and we can then use what we know about uncouple systems to conclude 

that 1
1 1( ) (0)tu t e uλ=  and 2

2 2( ) (0)tu t e uλ= , so 1 2
1 1 2 2 1 1 2 2( ) ( ) ( ) (0) (0)t tt u t u t u e u eλ λ= + = +x v v v v . 

In our specific example with 3(0) 1
 =   

x  and 1
2
1
 =   

v , 2
1
1
 =   

v  we can write 
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Solving systems using diagonalization and evolution matrices 
Given an n n×  matrix A, suppose S is a change of basis matrix corresponding to either diagonalization or 

reduction to Jordan Canonical Form. We will have 1− =S AS B  in this case, where B is diagonal or otherwise in 

simplest form. We then calculate 1−=A SBS , and substitution gives 1d
dt

−=x SBS x . 

Multiplying on the left by S-1 and using the basic calculus fact that ( )d d
dt dt= xMx M  for any (constant) 

matrix M, we have 
1

1 1( ) ( )dd
dt dt

−
− −= =S xxS B S x . If we write [ ]1−= =u S x x

B
, where B is the new, preferred 

basis, then in these new coordinates the system becomes d
dt =u Bu , but now the system will be much more 

straightforward to solve. 

The diagonalizable case 
In the case where B is a diagonal matrix with the eigenvalues of A on the diagonal, the system is just 
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To revert back to the original coordinates, we write =x Su , so 1( ) ( ) [ ] (0) [ ] (0)t tt t e e −= = =B Bx Su S u S S x . If 
we denote the evolution matrix for the system in its original coordinates as [ ]te A  where ( ) [ ] (0)tt e= Ax x , then 
the previous calculation gives the simple relation 1[ ] [ ]t te e −=A BS S . 

In other words, the evolution matrices for the solution are in the same relationship as the matrices A and B, 
namely A = SBS-1. This pattern is very easy to remember, and this same pattern will again be the case where B 
is not diagonal but where the corresponding evolution matrix is still relatively easy to calculate. 

1 1[ ] [ ]t te e− −= ⇒ =A BA SBS S S , and the solution of the original system will be ( ) [ ] (0)tt e= Ax x . 

The Main Idea: 

Given a system of 1st order linear differential equations d
dt =
x Ax  with initial conditions (0)x , we use 

eigenvalue-eigenvector analysis to find an appropriate basis 1{ , , }n= v vB   for Rn and a change of basis 

matrix 1 n

 ↑ ↑
 =
 
↓ ↓  

S v v  such that in coordinates relative to this basis ( 1−=u S x ) the system is in a standard 

form with a known solution. Specifically, we find a standard matrix 1[ ] −= =B A S ASB , transform the system 

into d
dt =u Bu , solve it as ( ) [ ] (0)tt e= Bu u  where [ ]te B  is the evolution matrix for B, then transform back to the 

original coordinates to get ( ) [ ] (0)tt e= Ax x  where 1[ ] [ ]t te e −=A BS S  is the evolution matrix for B. That is 
1( ) [ ] [ ] (0)t tt e e −= =A Bx S S x . This is easier to do than it is to explain, so here are a few illustrative examples: 

The diagonalizable case 

Problem: Solve the system 
5 6

3 4

dx x y
dt
dy x y
dt

 = − 
 
 = −
 

 with 

initial conditions (0) 3, (0) 1x y= = . 

Solution: In matrix form, we have d
dt =
x Ax  where  

5 6
3 4

− =  − 
A  and 3(0) 1

 =   
x . We start by finding 

the eigenvalues of the matrix: 
5 6

3 4
λλ λ
− − =  − + 

I A , and the characteristic 

polynomial is 2( ) 2 ( 2)( 1)p λ λ λ λ λ= − − = − +A . 
This gives the eigenvalues 1 2λ =  and 2 1λ = − . The 

first of these gives the eigenvector 1
2
1
 =   

v , and the second gives the eigenvector 2
1
1
 =   

v . So we have 

1 1 1

2 2 2

= λ 
 = λ 

Av v
Av v . The change of basis matrix is 2 1

1 1
 =   

S  and with the new basis (of eigenvectors) 

1 2{ , }= v vB we have 1 1

2

0 2 0[ ] 0 0 1
−    = = = =   −  

A S AS DB

λ
λ , a diagonal matrix. [There is no need to carry 
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out the multiplication of the matrices if 1 2{ , }= v vB  is known to be is a basis of eigenvectors. It will always 
yield a diagonal matrix with the eigenvalues on the diagonal.] 

The evolution matrix for this diagonal matrix is 
2 0[ ]
0

t
t

t
ee

e−

 
=  
 

D , and the solution of the system is: 
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Moral of the Story: It’s always possible to find a special basis relative to which a given linear system is in its 
simplest possible form. The new basis provides a way to decompose the given problem into several simple, 
standard problems which can be easily solved. Any complication in the algebraic expressions for the solution is 
the result of changing back to the original coordinates. 

The standard 2 2×  cases are: 

Diagonalizable with eigenvalues 1 2,λ λ : 1
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Complex pair of eigenvalues a ibλ = ± :  a b
b a
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B   cos sin[ ] sin cos

t at bt bte e bt bt
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B  

Repeated eigenvalue λ  with GM AM< :  1
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t t
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In general, you should expect to encounter systems more complicated than these 2 2×  examples. 


