
Revised September 25, 2020 1 

Math E-21c – Notes Differentiability, Linear Approximation, and Higher Order Approximation 
This introductory lecture will focus on basic ideas about differentiability and the derivative with applications to 
linear approximation, quadratic approximation, and higher order approximation. 

Differentiability and the Derivative 
Differential Calculus is built upon the dual idea ideas of rates of change 
and the derivative of a function. When we consider the graph of a 
function ( )f x , the notion of rate of change is best understood in terms 
of slope, i.e. how fast the values of the outputs change relative to a 
changing input. Over an interval [ , ]a x  the values may change from 

( )f a  to ( )f x , and the average rate of change over this interval will be 
correspond to the slope of the line from ( , ( ))a f a  to ( , ( ))x f x  given by 

( ) ( )y f x f a
x x a

∆ −
=

∆ −
. Such a line is generally referred to as a secant line. 

In order to get a more instantaneous measure of the rate of change at the single point ( , ( ))a f a , we simply draw 
x closer to a and use the idea of a limit to determine the slope of the tangent line (TL) to the graph at this point. 
If this limit exists, we say that the function is differentiable at a, and the value of this limit is the derivative 

( ) ( )lim ( )
x a

f x f a f a
x a→

−  ′= − 
 at this point. Geometrically, we can think of 

differentiability at a point as saying that the graph at this point can be well-
approximated by a tangent line at this point over some small interval around this 
point. 

Linear Approximation 
From the definition of the derivative as a limit, we can say that as long as x is 
close to a (how close is something that will need further clarification), then the approximation 

( ) ( ) ( )f x f a f a
x a
− ′≅
−

 will be valid. This can also be expressed as ( ) ( ) ( )( )f x f a f a x a′− ≅ −  or as 

( ) ( ) ( )( )f x f a f a x a′≅ + − . Another way to say this is that in the vicinity of this point the values on the actual 

graph ( )y f x=  will be approximately the same as the values on the tangent line ( ) ( )( )y f a f a x a′= + − . We 
also refer to the function that defines this tangent line as the linearization of f  at a , i.e. 

( ) ( ) ( )( )L x f a f a x a′= + − . 

Derivatives:  The calculation of derivatives from the definition is generally made simpler by using the revised 

definition for derivative at any point x given by 
0

( ) ( )( ) ( ( )) lim
h

d f x h f xf x f x
dx h→

+ − ′ = =  
 

. In addition to 

finding derivatives for a variety of elementary functions, we can also prove some differentiation rules that make 
the calculation of derivatives much simpler and more routine. Given two differentiable functions ( )f x  and 

( )g x  and any constant c, we have the following rules: 

Power Rule: 1( )p pd x p x
dx

−=  We proved this for any positive integer p, but it’s true for any (fixed) power p. 

Sums: [ ( ) ( )] ( ) ( )d f x g x f x g x
dx

′ ′+ = +  Differences: [ ( ) ( )] ( ) ( )d f x g x f x g x
dx

′ ′− = −  

Constant multiples: [ ( )] ( )d c f x c f x
dx

′⋅ = ⋅  Products: [ ( ) ( )] ( ) ( ) ( ) ( )d f x g x f x g x f x g x
dx

′ ′⋅ = +  
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Quotients: 2

( ) ( ) ( ) ( ) ( )
( ) [ ( )]

d f x g x f x f x g x
dx g x g x

′ ′  −
= 

 
 

From the product rule, we can also show (for positive integer powers p, but it’s true in general) that 
1[ ( )] [ ( )] ( )p pd f x p f x f x

dx
− ′= , a fact that is a special case of the Chain Rule. 

Chain Rule: If ( )y f u=  and ( )u g x=  are differentiable functions (where appropriate), then the composition 

( )( ) ( ( ))f g x f g x=  is also differentiable and ( )( ) ( ( )) ( )d
dx f g x f g x g x′ ′= ⋅ . Using the Leibnitz notation for 

derivatives this can also be expressed as dy dy du
dx du dx= . 

Implicit differentiation: One particularly valuable application of the Chain Rule is that it allows us to indirectly 
calculate derivatives from relations defined by equations without explicitly solving for one variable in terms of 
the other. This is often simpler even in the case where it’s possible to find solve explicitly for such a function. 
For example, the equation 2 2 4x y+ =  implicitly defines two functions whose graphs are the upper and lower 
semicircles of the full circle defined by this equation. Differentiating implicitly we get: 

( )2 2 (4) 2 2 0dy dyd d
dx dx dx dx

xx y x y y+ = ⇒ + = ⇒ = −  

In this example, since we can actually solve explicitly (for the upper semicircle) for 24y x= − , we could 

express the derivative as 
24

dy
dx

x
x

= −
−

. We could also have calculated this derivative directly using a 

combination of the Power Rule and Chain Rule. 

Exponential and logarithmic functions: From the definition we can show that ( )x xd e e
dx

= , the only function 

whose derivative is equal to itself. A quick application of the Chain Rules gives that for any constant k, 

( )kx kxd e ke
dx

= . Using implicit differentiation we can then find the derivative of the natural logarithm function 

ln x , the inverse of the function xe . Specifically, if lny x= , we can exponentiate both sides to get ye x= , 

differentiate both sides to get 1y dy
dxe = , so 1 1

y
dy
dx xe

= = . That is 1(ln )d x xdx
= . 

We can use these facts, plus the rules of exponents (and the fact that exponential functions and their 
corresponding logarithmic functions are inverses of each other) to find the derivative of any exponential 
function. Specifically, we can write ln ln ln( ) ( ) ( )x a x x a x aa e e e= = = , so using previously stated facts we have 

ln ln 1 ln( ) ( ) (ln )( ) ( ) (ln )( ) (ln )x x a x a x x a xd da e a e e a e a a
dx dx

− = = = =  , or, more succinctly, ( ) lnx xd a a a
dx

= . We 

could also have done this using logarithmic differentiation, i.e. taking the logarithm of both sides and then use 
implicit differentiation. Specifically, 1ln ln ln lnx xdy dy

y dx dxy a y x a a a a= ⇒ = ⇒ = ⇒ = , so 

( ) lnx xd
dx a a a= . Similarly, using the fact that ln

lnloga
x
ax = , we can show that ( ) 1

lnloga
d
dx x ax = . 
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Trigonometric functions: There are three basic trigonometric functions, sin x , cos x , and sintan
cos

xx
x

= ; and 

their respective reciprocal functions csc x , sec x , and coscot
sin

xx
x

= . We used the definition of the derivative 

and the important limits 
0

sinlim 1
h

h
h→

  = 
 

 (proved using the Squeeze Theorem) and 
0

1 coslim 0
h

h
h→

−  = 
 

 to find the 

derivatives of sin x  and cos x . The other derivatives then followed by using the Quotient Rule and the 
Pythagorean identities: 2 2sin cos 1x x+ = , 2 2tan 1 secx x+ = , and 2 21 cot cscx x+ = . We can display all of 
the derivatives of the trigonometric functions in a table: 

(sin ) cosd x x
dx

=  (csc ) csc cotd x x x
dx

= −  

(cos ) sind x x
dx

= −  (sec ) sec tand x x x
dx

=  

2(tan ) secd x x
dx

=  2(cot ) cscd x x
dx

= −  

One way to help remember these is the observation that “whatever is true for a trig function is also true for 
its co-function – except that you put a ‘co’ on everything and put in a minus sign.” Obviously, this needs to be 
correctly interpreted in order to be helpful. 

We can use the basic derivatives of polynomial functions, exponential functions, and trigonometric 
functions in conjunction with the previous rules to calculate the derivatives of more complicated expressions 
involving these functions. 

For example, if 3

tan( )
xe xg x

x
= , then: 

3 3 3 2 2

3 3 2 6

( tan ) ( tan ) ( )tan ( sec tan ) ( tan )(3 )( )
( )

x xx x x xd d
dx dxx e x e x xd e x x e x e x e x xg x

dx x x x
  − + −′ = = = 
 

 

2

4

( sec tan 3tan )xe x x x x x
x

+ −
=  

Second derivatives: It should be clear by now that the derivative of a function (giving the slope of a tangent line 
at any point) is also a function, i.e. its values vary from point to point. Consequently, it makes sense to talk 

about “the derivative of the derivative”, ( ( )) ( )d f x f x
dx

′ ′′= , or the rate of change of the slopes. If the slopes are 

increasing, then the rate of change of the slopes will be positive (so the second derivative will be positive), and 
this corresponds to the graph being “concave up”. If the slopes are decreasing, then the rate of change of the 
slopes will be negative (so the second derivative will be negative), and this corresponds to the graph being 

“concave down”. The alternate (Leibnitz) notation for the second derivative is 
2

2

d dy d y
dx dx dx

  = 
 

. 

Motion described using derivatives: If we have defined a “position function” ( )s t  that gives the position s of an 
object at any time t for a “particle” moving along a line with coordinate s, then the interpretation of the 

derivative ( ) dss t
dt

′ =  is as the “time rate of change of the position”, i.e. how fast the position is changing in time. 

This is the definition of instantaneous velocity, ( ) ( ) dsv t s t
dt

′= = . Of course, the velocity may also be changing 

in time and we identify this “time rate of change of velocity” as the (instantaneous) acceleration, 
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2

2( ) ( ) ( ) ( )d d ds d sa t v t v t s t
dt dt dt dt

 ′ ′′= = = = = 
 

. For any given problem involving motion along a straight line, 

these three functions: position ( )s t , velocity ( )v t , and acceleration ( )a t  can be used in tandem to answer most 
questions regarding the motion. 

Linear Approximation calculations 
The approximation ( ) ( ) ( )( )f x f a f a x a′≅ + −  is valid for values x a≈  (x near a) if the given function is 
differentiable at a. This can be used to give approximate values as long as we can easily calculate the values of 

( )f a  and ( )f a′ . 

Example: Use the apparatus of linear approximation to provide an approximate value of 28 . 

Solution: Consider the differentiable function ( )f x x= . Its derivative is 1( )
2

f x
x

′ =  and both of these are 

easy to calculate at the nearby point 25a = . Specifically, (25) 5f =  and 1
10(25)f ′ = . Linear approximation 

then gives that for 25x ≈  we have 1
105 ( 25)x x≅ + − . Therefore 1

1028 5 (28 25) 5.3≅ + − = . Note that 
although this is a valid approximation, we don’t really yet know how good this approximation is. 

How can we improve this approximation? There are several good answers to that question. One approach might 
be to note that since 2(5.3) 28.09=  is much closer to 28 and we can simply calculate the values of the function 
and its derivative at this point, we could use 28.09a =  as our base point, i.e. 

( ) (28.09) (28.09)( 28.09)f x f f x′≅ + − . We calculate that (28.09) 5.3f =  and 1
10.6(28.09)f ′ = , so we now 

have that 1
10.65.3 ( 28.09)x x≅ + −  and 0.091

10.6 10.628 5.3 (28 28.09) 5.3 5.291509≅ + − = − ≅ . At this point it is 

perhaps helpful to note that the calculator value for 28  is 5.29150262213, so were able to reduce the error 
greatly using this revised linear approximation (in this case, about 5 decimal place accuracy). 

Newton’s Method 
The above calculation is somewhat similar to the well-established Newton’s Method for finding the roots of 
almost any equation. The basic idea is this: If you would like to find the roots of a function ( )g x , i.e. solutions 
to the equation ( ) 0g x = , start by making a good guess at an approximate root 0x , use linear approximation to 
find the equation of the tangent line to the graph at this point 0 0 0( ) ( )( )y g x g x x x′= + − , then see where this line 
crosses the x-axis to define an improved guess 1x . That is 0 0 1 00 ( ) ( )( )g x g x x x′= + −  which we can solve to get 

0
1 0

0

( )
( )

g xx x
g x

= −
′

. As long as our initial guess is not near a critical point, this should provide a greatly improved 

estimate of the root. This process can then be repeated to give 1
2 1

1

( )
( )

g xx x
g x

= −
′

 or more generally; 

1
( )
( )

n
n n

n

g xx x
g x+ = −
′

. 

In the previous example, we can seek the value of 28  by noting that if 28x = , then 2 28x =  or 2 28 0x − = . 
So we are seeking a (positive) root of the function 2( ) 28g x x= − . Its derivative is ( ) 2g x x′ = . If we choose 

0 5x =  as our first guess, then (5) 3g = −  and (5) 10g′ = , so 1
35 5.3

10
x −
= − = . We then calculate that 

(5.3) 0.09g =  and (5.3) 10.6g′ = , so 1
0.095.3 5.291509
10.6

x = − ≅  (which you might note is exactly the same as in 

our previous method). If we apply Newton’s Method just one more time, we get 2 5.29150262213x =  which is 
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indistinguishable from our calculator value (11-place accuracy, in this case). It is very simple to program 
Newton’s Method (step-by-step) into a programmable calculator, so these recursive calculations can be done 
very quickly. 

Common Linear Approximation Expressions 
Though the method for finding expressions for linear approximation can be done around any point where a 
given function is differentiable, it’s useful to develop a library of example that are valid in the vicinity of 0a = . 
Some common, simple to calculate, examples are:  

1 1
1

x
x
≅ +

−
 and (1 ) 1rx rx+ ≅ +  and 1xe x≅ +  and ln(1 )x x+ ≅  and sin x x≅ . These are valid for 0x ≈ , 

but we have not yet addressed the issue of how good these approximations are or how close we must be for the 
approximations to remain valid. 

Quadratic Approximation 
If approximation by a straight (tangent) line can provide a good approximation of the graph of a function at a 
point x a= , then surely we could produce a better approximation at a point of differentiability if we instead 
approximate the graph by a parabola, i.e. the graph of a quadratic function. It is best to express such a quadratic 
function in powers of x a−  in order that each successive term provide small corrections to the previous terms. 
That is we want to approximate a function ( )f x  with a function of the form 2( ) ( ) ( )Q x A B x a C x a= + − + − . If 
we insist that the values, slopes, and concavity (value of the second derivative) all match at x a=  in order to 
provide the best fit, and note that ( ) 2 ( )Q x B C x a′ = + −  and ( ) 2Q x C′′ = , we get that ( ) ( )f a Q a A= = , 

( ) ( )f a Q a B′ ′= = , and ( ) ( ) 2f a Q x C′′ ′′= = , so ( )A f a= , ( )B f a′= , and 1
2 ( )C f a′′= . The best quadratic 

approximation for x a≈  is therefore 21
2( ) ( ) ( )( ) ( )( )f x f a f a x a f a x a′ ′′≅ + − + − . 

Example: Use the apparatus of linear approximation to provide an approximate value of 28 . 

Solution: Consider the differentiable function ( )f x x= . Its derivatives are 1( )
2

f x
x

′ =  and 

( )3
1( )

4
f x

x
′′ = −  and these are easy to calculate at the nearby point 25a = . Specifically, (25) 5f = , 

1
10(25)f ′ = , and 1

500(25)f ′′ = − . Quadratic approximation then gives that for 25x ≈  we have 
21 1

10 10005 ( 25) ( 25)x x x≅ + − − − . Therefore 21 1
10 100028 5 (28 25) (28 25) 5.3 .009 5.291≅ + − − − = − = . 

Though this is a valid approximation, we still can’t precisely say how good this approximation is. 

Common Quadratic Approximation Expressions 
Though the method for finding expressions for quadratic approximation can be done around any point where a 
given function is differentiable, it’s useful to develop a library of example that are valid in the vicinity of 0a = . 
Some common, simple to calculate, examples are:  

21 1
1

x x
x
≅ + +

−
 and 21

2(1 ) 1 ( 1)rx rx r r x+ ≅ + + −  and 21
21xe x x≅ + +  and 21

2ln(1 )x x x+ ≅ −  and 

sin x x≅  (same as its linear approximation) and 
2

cos 1 2
xx ≅ − . 

Again, these approximations are only valid for 0x ≈ . 

Tips and Tricks 
If we use the above expressions for approximation and understand that they are all valid for sufficiently small 
values of the given variable, then we can easily modify them via substitution and algebraic combination (taking 
care to neglect any terms of order higher than quadratic). Several examples follow. 
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Example: Given the fact that 21
2(1 ) 1 ( 1)rx rx r r x+ ≅ + + − , then with 1

2r =  we get that 21 1
2 81 1x x x+ ≅ + −  

for small values of x. Replacing x  by kx , we can then say that 2 2
2 81 1 k kkx x x+ ≅ + −  for small values of x. 

Example: Since 21 1
1

x x
x
≅ + +

−
 for small values of x, replacing  x  by x−  gives 21 1

1
x x

x
≅ − +

+
. 

Example: Since 21 1
1

x x
x
≅ + +

−
 for small values of x, if we multiply both sides by x  and neglect higher order 

terms we get that 2 2 3 2(1 )
1

x x x x x x x x x
x
≅ + + = + + ≅ +

−
 to 2nd order. 

Example: Since 21 1
1

x x
x
≅ + +

−
 for small values of x, if we multiply both sides by 1 x+  and neglect higher 

order terms we get that 2 2 3 21 (1 )(1 ) 1 2 2 1 2 2
1

x x x x x x x x x
x

+
≅ + + + = + + + ≅ + +

−
 to 2nd order. 

Nth Order (Taylor) Approximation 
If we use the same idea of matching derivatives at a given point, we can approximate a function at a point of 
sufficient differentiability to approximate it by an nth order polynomial. If the point about which we 

approximate is x a= , calculation shows that the coefficients must be of the form 
( ) ( )

!

n

n
f aa

n
= . The resulting 

Taylor polynomial approximation is therefore 
( )

2( ) ( )( ) ( ) ( )( ) ( ) ( )
2! !

n
nf a f af x f a f a x a x a x a

n
′′

′≅ + − + − + + − . 

In the special case where 0a = , this is known as the Maclaurin polynomial: 
( )

2(0) (0)( ) (0) (0)
2! !

n
nf ff x f f x x x

n
′′

′≅ + ⋅ + ⋅ + + ⋅  

The Maclaurin polynomial is relatively simple to calculate for some simple functions. For example, if we 
calculate the appropriate derivatives and evaluate it’s easy to derive that: 

21 1
1

nx x x
x
≅ + + + +

−
  (though this approximation really only makes sense for small x (specifically 1x < ) 

– more on this later 

2 31 1 1
2! 3! !1x n

ne x x x x≅ + + + + +  (this will eventually actually work for all x, but it works well for 0x ≈ ) 

3 5 2 1

sin ( 1)
3! 5! (2 1)!

n
nx x xx x

n

+

≅ − + − + −
+

  (this will eventually actually work for all x, but it works well for 0x ≈ ) 

2 4 2

cos 1 ( 1)
2! 4! (2 )!

n
nx x xx

n
≅ − + − + −  (this will eventually actually work for all x, but it works well for 0x ≈ ) 

Note: Later, when we’ve discussed sequences and convergence, we’ll take up the issue of what happens if we 
continue ad infinitum and properly define infinite series and power series. This will enable us to make sense 
out of formal power series expressions like 

( ) ( )
2

0

( ) ( ) ( )( ) ( ) ( )( ) ( ) ( ) ( )
2! ! !

n n
n n

n

f a f a f af x f a f a x a x a x a x a
n n

∞

=

′′
′≅ + − + − + + − + = −∑   (Taylor series) 
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and 
( )

2(0) (0)( ) (0) (0)
2! !

n
nf ff x f f x x x

n
′′

′≅ + ⋅ + ⋅ + + ⋅  (Maclaurin series). 

We can certainly find these formal expressions and work with them, but we really have to do some additional 
work before fully understanding what these formal expressions really mean. For now, just think of these 
expressions as a convenience with which we can work with the intention of eventually truncating at whatever 
power is appropriate for our needs. 

In particular, we have the following short list of especially handy Maclaurin series: 

2

0

1 1
1

n n

n
x x x x

x

∞

=

≅ + + + + + =
− ∑   (only valid for small x, specifically 1x < ) 

2

0
1

2! ! !

n n
x

n

x x xe x
n n

∞

=

≅ + + + + + =∑   

3 5 2 1 2 1

0
sin ( 1) ( 1)

3! 5! (2 1)! (2 1)!

n n
n n

n

x x x xx x
n n

+ +∞

=

≅ − + − + − = −
+ +∑  

2 4 2 2

0
cos 1 ( 1) ( 1)

2! 4! (2 )! (2 )!

n n
n n

n

x x x xx
n n

∞

=

≅ − + − + − = −∑  

Tips & Tricks (again) 
Once we address what it means for a series to converge, it will be possible to justify why it’s valid to 
manipulate known series to get new series via substitution, algebraic combination, term-by-term differentiation, 
and term-by-term integration. 

Example: Suppose we would like a Maclaurin series expressions for the function 1( ) tanf x x−=  valid for 
values of 0x ≈ . We could just start calculating derivatives and evaluating at 0 to determine the necessary 

coefficients, but this can prove nightmarish very quickly. Instead, note that 1
2

1tan
1

d
dx x

x
−  =  +

, so if we can 

find a power series expression for this, we’ll have a series for the derivative of what we want, and we can then 
just integrate term-by-term (being mindful of the arbitrary constant, of course) to produce the desired power 
series. 

We know that 2

0

1 1
1

n n

n
x x x x

x

∞

=

≅ + + + + + =
− ∑   for 0x ≈ . 

Replacing x by x−  gives 2

0

1 1 ( 1) ( 1)
1

n n n n

n
x x x x

x

∞

=

≅ − + − + − + = −
+ ∑  , also valid for 0x ≈ . 

Replacing x by 2x  gives 2 4 2 2
2

0

1 1 ( 1) ( 1)
1

n n n n

n
x x x x

x

∞

=

≅ − + − + − + = −
+ ∑  , also valid for 0x ≈ . 

(Note that we could have combined these two steps by simply replacing x by 2x− .) 

Integration term-by-term them gives that 
3 5 2 1 2 1

1

0
tan ( 1) ( 1)

3 5 2 1 2 1

n n
n n

n

x x x xx x C C
n n

+ +∞
−

=

≅ − + − + − + + = + −
+ +∑   

and evaluation for 0x =  gives that 0C = . So 
3 5 2 1

1tan ( 1)
3 5 2 1

n
nx x xx x

n

+
− ≅ − + − + −

+
 . 

 
Notes by Robert Winters 


