
Problem Set #13 – Math E-21c – Fall 2024 
[60 points total] 

Problem 1: (10 pts) Solve the system 
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 with initial conditions (0) 1, (0) 1x y= = − . Express your 

solution in terms of real-valued functions. Sketch the general flow of this system and, in particular the 
solution for the given initial conditions. 

Problem 2: (20 pts) 

a) For the system  
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, find the evolution matrix [ ]te B . 

Refer to Problems 6, 7, and 8 from PS12 for ideas on how to solve this. Under what conditions will the 
zero state be a stable equilibrium? 

b) The system 
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A  has a repeated eigenvalue 

with algebraic multiplicity 3 but only one independent eigenvector. Find the eigenvalue λ  and an 
eigenvector 1v  as well as generalized eigenvectors 2v  and 3v  to form a basis 1 2 3{ , , }= v v vB  such that 
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c) Use the basis in part (b) and the result of part (a) to find the unique solution to the system 
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 with initial conditions (0) 1x = , (0) 1y = , (0) 2z = . 

Problem 3: (15 pts) Solve the system 
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 with initial conditions (0) 1, (0) 1x y= = − . Express 

your solution in terms of real-valued functions. Sketch the general flow of this system and, in particular the 
solution for the given initial conditions. [Hint: Find the equilibrium and translate axes.] 

Problem 4: (15 pts.) Find the general solution of the nonautonomous system 
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 by relating it 

to a linear system. [Reference: Lectures Notes #13, pgs 4-9. Use either Undetermined Coefficients or 
Variation of Parameters to find particular solution.] 


