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Linear Algebra – Lecture #6 Notes 

This week’s class concerns the ideas of inner products and orthogonality beyond the more basic constructions 

introduced earlier in the course. It should be noted that most of what we did in Rn and everything we’ve done so 

far with general vector spaces was based only on the ability to add and scale elements. The structure necessary 

to measure lengths and angles is a very useful additional structure. We’ll look at the basic properties of inner 

products, derive some algebraic facts, and define and focus on orthonormal bases and their advantages. 

Among these advantages are the simplicity of determining coordinates and producing the matrix for orthogonal 

projection. We’ll also define the orthogonal complement of a subspace and give a very simple method for 

finding it. 

Inner products and inner product spaces 

Definition: An inner product in a linear space V is a rule that assigns a scalar (denoted by ,f g ) to any pair 

,f g  of elements of V, such that the following properties hold for all , ,f g h V , and all scalars c: 

a. , ,f g g f=    (symmetry) 

b. , , ,f g h f g f h+ = +  and , , ,f g h f h g h+ = +    (left and right distributive laws) 

c. , ,cf g c f g=  

d. 
2

, 0f f f=   for all f V , and , 0f f =  only if f is the zero element.   (positive definiteness) 

A linear space endowed with an inner product is called an inner product space. Because the last property 

enables us to define the norm (or magnitude) f  of any element, this is also sometimes referred to as a 

normed linear space. 

Examples 

I. We will primarily focus on the dot product in n
R , i.e. 

1 1 2 2, n nx y x y x y=  = + + +x y x y . This makes n
R  

not only a vector space but also an inner product space because the dot product enables us to define the 

length or norm of any vector as ,=x x x ). We have previous shown (using the Law of Cosines) that 

cos =x y x y  for any two vectors. [This is also consistent with the Cauchy-Schwarz inequality which 

states that  x y x y . (See text for proof.)] It should be noted that this is used to define angles in n
R  and 

thus enables us to talk about orthogonality of vectors even in spaces that we cannot fully visualize. We can 

define acute angles and obtuse angles, but perhaps most valuable is the ability to say that two nonzero vector 

are orthogonal (or perpendicular) if and only if their dot product is zero. The inner product properties are easy 

to verify: 

a.  = x y y x  

b. ( ) + =  + x y z x y x z  and ( )+  =  + x y z x z y z  

c. ( ) ( ) ( )c c c =  = x y x y x y  

d. 
2

0 = x x x  for all nx R , and 
2

0 = =x x x  only if 0=x . 

It’s an interesting fact that not only can we define length in terms of the dot product, we can also express the 

dot product in terms of length. Specifically: 

( )
2 2 2

2 2 2 2

2 2 2

1
4

( ) ( ) 2
4

( ) ( ) 2

+ = +  + = + + 
 + − − =    = + − −

− = −  − = + − 

x y x y x y x y x y
x y x y x y x y x y x y

x y x y x y x y x y
 



revised 3/3/2023 2 

II. In the linear space m n
R  consisting of all m n  matrices with real entries, we can define 

T, trace( )=A B A B  where the trace is the sum of the diagonal entries of the n n  matrix T
A B . It’s not 

difficult to verify the four axioms for an inner product. One interesting aspect of this inner product is that it 

enables us to define a norm on the space of m n  matrices, i.e. 
2 T, trace( )= =A A A A A . If we express 

1 n

  
 =
 
   

A v v , a quick calculation shows that 
2 2 2

1 n= + +A v v . 

III. Arguably the most useful inner products are those defined for various spaces of functions. If you think of 

the components of a vector as values of a function, i.e. 
1, , (1), , ( )nx x x x n= =x , then the dot product 

is just the (finite, discrete) sum of the product of the respective values. If we have a real-valued function 

defined at all points in some interval [ , ]a b , then we might use integration as the analogous summation and 

define , ( ) ( )
b

a
f g f x g x dx=  . This integral may not be defined for all functions, so we may have to restrict 

the class of function for which this inner product is defined. Common choices are to restrict to continuous 

functions or piecewise-continuous functions. We can easily establish the first three axioms for an inner 

product space. The fourth axiom follows in the case of continuous functions but requires some additional 

interpretation in the case of more general functions. An inner product in a linear space of functions enables us 

to define orthogonal functions and the norm of a function. We can also think of the “distance between two 

functions” as f g−  where 
2 2[ ( ) ( )]

b

a
f g f x g x dx− = − . We can also modify the inner product by scaling 

by a factor matched to the width of the interval [ , ]a b  and still satisfy all the necessary axioms. For example, 

when considering piecewise-continuous functions defined on the interval [ , ] − , one good choice is to 

define 1, ( ) ( )f g f x g x dx


 −
=  . This choice is the foundation for understanding Fourier Series based on 

the orthogonality of trigonometric functions with respect to this inner product. 

Back to 
n

R : 

Definition: A collection of vectors  1 2, , , mu u u  is called orthonormal if it consists of mutually orthogonal 

unit vectors. That is, 
1 if 

0 if i j

i j

i j

= 
 =  

 
u u . 

Example: The standard basis  1 2, , , n= e e eE  for n
R  is orthonormal. Any subset of this is also orthonormal. 

Proposition: Orthonormal vectors are always linearly independent. 

Proof: Let  1 2, , , mu u u  be orthonormal and suppose that 1 1 2 2 m mc c c+ + + =u u u 0 . Then for any k we have: 

( )

( )

1 1 2 2 0

0 for all 

k m m k

k k k k

c c c

c c k

 + + + =  =

 = =

u u u u u 0

u u
 

So the vectors  1 2, , , mu u u  are linearly independent. 

Corollary: If  1 2, , , nu u u  are orthonormal in n
R , then they form an orthonormal basis for n

R . 

An orthonormal basis (for either a subspace or all of n
R ) is advantageous in several ways. In particular, such 

a basis makes the calculation of coordinates relative to an orthonormal basis simple, and it provides a simple 

way to define and calculate the orthogonal projection of a vector onto a subspace. This begins with the 

definition of the orthogonal complement of a subspace. 
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Definition: If 
nV  R  is a subspace, its orthogonal complement is { : 0 for all }nV V⊥ =   = x R x v v . This 

is also a subspace (with complementary dimension). In words, the orthogonal complement of a subspace 

consists of all vectors that are orthogonal to (every vector in) this subspace. 

Finding V ⊥ : Suppose  1Span , , kV = v v . Ideally this should be a basis for V, but this is not essential. If we 

let 
1 k

  
 =
 
   

A v v , then A will be an n k  matrix with im( )V = A  and rank( ) dim( )V=A . The transpose 

of A is defined to be the k n  matrix whose rows are the columns of A, i.e. 
1

T

k

 → 
 =
 
 → 

v

A

v

. Note that: 

1 1
T T

0 0

ker

0 0k k

V ⊥

  =  →      
         = =  =          =  →        

v x v

x x 0 A x 0 x A

v x v

 

So Tker( )V ⊥  x x A . This argument also establishes the fact that T(im ) ker( )⊥ =A A  for any matrix A. 

Much of the focus in this Linear Algebra course has been on the columns of a matrix, but we actually began 

with the focus on the rows of a matrix, the three classes of elementary row operations (row swaps, row scalings, 

and adding a multiple of one row to another), and reduced row-echelon form of a matrix. 

There are several important facts that deserve further elaboration. Given an m n  matrix 
1 n

  
 =
 
   

A v v , we 

know that 1( ) { , , }nim span=A v v  which is why the image of a matrix is also known as its column space, a 

subspace of its codomain m
R . 

We can also think of a matrix in terms of its rows, i.e. 
1

m

 → 
 =
 
 → 

w

A

w

. If we do so, we can consider the 

span of its rows, i.e. 1span{ , , }nw w , a subspace of its domain n
R  called its row space, denoted by ( )row A . 

It’s relatively easy to see that even though the elementary row operations will produce matrices with altered 

rows, they will not change its row space, i.e. the rows of the altered matrices will continue to span the same 

subspace (see below). Indeed, if we go through a sequence of row operations to obtain the reduced row-echelon 

form of a given matrix A , then ( ( )) ( )row RREF row=A A . 

We have shown that   T( ) ( )im ker
⊥
=A A  and it’s easy to show from this (by simply considering the transpose) 

that T( ) ( )im ker
⊥

  = A A  and therefore  T( ) ( )im ker
⊥

=A A . If we translate these statements in terms of row 

spaces, we can observe that  T( ) ( ) ( )im row ker
⊥ ⊥

  = = A A A  and  T( ) ( ) ( )im row ker
⊥

= =A A A . Said 

differently, ( )row A  and ( )ker A  are (orthogonally) complementary subspaces of the domain; and ( )im A  and 
T( )ker A  are complementary subspaces of the codomain. These four spaces are sometimes referred to as the 

“The Four Fundamental Subspaces” associated with a given matrix A . 

 



revised 3/3/2023 4 

Definition: Given a subspace 
nV  R , the orthogonal 

projection of a vector x onto this subspace is the unique 

vector ProjV x  such that ProjV V ⊥− x x . 

Why should such a vector be unique? How do we know that 

this is well-defined? If we have an orthonormal basis for the 

subspace V, this follows from the next proposition. 

Proposition: Suppose  1, , k= u uB  is an orthonormal (ON) 

basis for a subspace 
nV  R . Then for any nx R , 

1 1 2 2Proj ( ) ( ) ( )V k k=  +  + + x x u u x u u x u u . That is, the 

coordinates of the projection are just the scalar projections 

of x in the direction of the respective unit vectors of the ON basis. 

Proof: Suppose 1 1 2 2ProjV k kc c c= + + +x u u u . By definition, 
1 1 2 2ProjV k kc c c V ⊥− = − − − − x x x u u u . 

Therefore, for all i, 1 1 2 2( ) 0i k k i ic c c c − − − − =  − =u x u u u u x . So i i ic =  = u x x u  for all i. This not only 

gives us the formula as stated in the proposition, the fact that coordinates relative to a basis are unique 

establishes the uniqueness of the projection. 

It is important, however, to note that this demonstration was based on the existence of an ON basis for any 

subspace. We’ll soon see a method for constructing such a basis out of any given basis. 

Formula for the matrix of orthogonal projection 

It’s not obvious, but the formula 1 1 2 2Proj ( ) ( ) ( )V k k=  +  + + x x u u x u u x u u  enables us to find the matrix for 

orthogonal projection onto any subspace 
nV  R  with ON basis  1, , k= u uB . We write: 

1 1
T

1 1 1 1Proj ( ) ( )V k k k k

k k

           →    
        =  + +  = = =
        

  →                 

u x u

x x u u x u u u u u u x BB x

u x u

 

where B is the k n  matrix with ON columns given by the ON basis. So T=A BB  is the matrix for ProjV . 

Corollary: The matrix for reflection through the subspace V is given by T2 −BB I . 

Proof: We have already seen (and a picture makes clear) that if ProjV=p x , then 
T TRef 2( ) 2 2 (2 )V = + − = − = − = −x x p x p x BB x x BB I x , so TRef 2V = −BB I . 

Example: Let L be the line in 3
R  spanned by the vector 

1
2
2

 
=  
 − 

v . If we normalize this, then 1
3

1
2
2

 
=  

 − 

u  

provides an ON basis for this line (subspace). We have 

 T T 1 1
9 9

1 1 2 2
Proj 2 1 2 2 2 4 4

2 2 4 4
V

−   
= = = − = −   

   − − −   

BB uu  and 

T 2 1
9 9

1 2 2 1 0 0 7 4 4

Ref 2 2 4 4 0 1 0 4 1 8

2 4 4 0 0 1 4 8 1
V

− − −     
     = − = − − = − −
     
− − − − −     

BB I . 
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We can easily construct an orthonormal basis for the plane S L⊥= , namely 1 1
2 18

0 4
1 , 1
1 1

     
= −    

        

B . 

If we write 

0 4 18

1 2 1 18

1 2 1 18

 
 

= − 
 
 

B , then: 

T 1
9

0 4 18 8 9 2 9 2 9 8 2 2
0 1 2 1 2

Proj 1 2 1 18 2 9 5 9 4 9 2 5 4
4 18 1 18 1 18 2 9 4 9 5 9 2 4 51 2 1 18

S

  − −         = = − = − = −      −       

BB . 

T 2 1
9 9

8 2 2 1 0 0 7 4 4

Ref 2 2 5 4 0 1 0 4 1 8

2 4 5 0 0 1 4 8 1
S

− −     
     = − = − − = −
     
     

BB I . 

Special Case: If nV = R  and  1, , n= u uB  is an orthonormal basis for all of n
R , then Proj IdentityV =  and 

1 n

  
 =
 
   

B u u  will be an n n  matrix with ON columns (hence invertible), and TProjV = =BB I . 

Therefore in this special case we’ll have 1 T− =B B . Such a matrix is called an orthogonal matrix. We’ll take a 

different approach to this in the next lecture when we discuss isometries and orthogonal transformations. 

Note: If 
1 k

  
 =
 
   

B u u  is any n k  matrix with orthonormal columns, it’s easy to calculate that 

1 1 1 1
T

1

1

1 0

0 1

k

k k

k k k k

  →         
      = = = =
      

 →          

u u u u u

B B u u I

u u u u u

. 

In the special case where B is an n n  matrix with orthonormal columns, this gives T

n=B B I . 

Notes by Robert Winters 


