Math E-21b – Spring 2025 – Homework #8

Problem 1. (6.1/18) Use the determinant to find out for which values of the constant k the matrix $\begin{bmatrix} 0 & 1 & k \\ 3 & 2k & 5 \\ 9 & 7 & 5 \end{bmatrix}$ is invertible.

In Problems 2 and 3, use the determinant to find out for which values of the constant λ the matrix $\mathbf{A} - \lambda \mathbf{I}_n$ fails to be invertible.

Problem 2. (6.1/26)
$$\mathbf{A} = \begin{bmatrix} 4 & 2 \\ 2 & 7 \end{bmatrix}$$
 Problem 3. (6.1/30) $\mathbf{A} = \begin{bmatrix} 4 & 2 & 0 \\ 4 & 6 & 0 \\ 5 & 2 & 3 \end{bmatrix}$

Problem 2. (6.1/26) $\mathbf{A} = \begin{bmatrix} 4 & 2 \\ 2 & 7 \end{bmatrix}$ **Problem 3.** (6.1/30) $\mathbf{A} = \begin{bmatrix} 4 & 2 & 0 \\ 4 & 6 & 0 \\ 5 & 2 & 3 \end{bmatrix}$ **Problem 4.** (6.1/34) Find the determinant of the matrix $\begin{bmatrix} 4 & 5 & 0 & 0 \\ 3 & 6 & 0 & 0 \\ 2 & 7 & 1 & 4 \\ 1 & 8 & 2 & 3 \end{bmatrix}$. [**Do it without the calculator.**]

Problem 5. (6.1/44) If **A** is an $n \times n$ matrix and k is an arbitrary constant, what is the relationship between $det(\mathbf{A})$ and $det(k\mathbf{A})$?

Problem 6. Use Gaussian elimination, i.e. row reduction, to find the determinant of the matrix:

(a)
$$(6.2/6)$$
 $\begin{bmatrix} 1 & 1 & 1 & 1 \\ 1 & 1 & 4 & 4 \\ 1 & -1 & 2 & -2 \\ 1 & -1 & 8 & -8 \end{bmatrix}$ (b) $(6.2/9)$ $\begin{bmatrix} 1 & 1 & 1 & 1 \\ 1 & 2 & 2 & 2 & 2 \\ 1 & 1 & 3 & 3 & 3 \\ 1 & 1 & 1 & 4 & 4 \\ 1 & 1 & 1 & 1 & 5 \end{bmatrix}$

Problem 7. (6.2/17) Find the determinant of the linear transformation T(f) = 2f + 3f' from P_2 to P_2 .

Problem 8. (6.2/18) Find the determinant of the linear transformation (T(f))(t) = f(3t-2) from P_2 to P_2 .

Problem 9. (6.2/25) Find the determinant of the linear transformation $T(\mathbf{M}) = \begin{bmatrix} 2 & 3 \\ 0 & 4 \end{bmatrix} \mathbf{M}$ from the space V of 2×2 upper triangular matrices to V.

Problem 10. (6.2/26) Find the determinant of the linear transformation $T(\mathbf{M}) = \begin{bmatrix} 1 & 2 \\ 2 & 3 \end{bmatrix} \mathbf{M} + \mathbf{M} \begin{bmatrix} 1 & 2 \\ 2 & 3 \end{bmatrix}$ from the space V of symmetric 2×2 matrices to V.

Problem 11. (6.2/34) a. For an invertible $n \times n$ matrix **A** and an arbitrary $n \times n$ matrix **B**, show that $\operatorname{rref}[\mathbf{A} \mid \mathbf{AB}] = [\mathbf{I}_n \mid \mathbf{B}].$

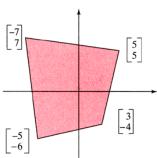
Hint: The left part of rref[$\mathbf{A} \mid \mathbf{AB}$] is rref($\mathbf{A} \mid \mathbf{AB}$] is rref($\mathbf{A} \mid \mathbf{AB}$] = [$\mathbf{I}_n \mid \mathbf{M}$]; we have to show that $\mathbf{M} = \mathbf{B}$. To demonstrate this, note that the columns of matrix $\begin{vmatrix} \mathbf{B} \\ -\mathbf{I}_n \end{vmatrix}$ are in the kernel of $[\mathbf{A} \mid \mathbf{AB}]$ and therefore in the kernel of $[I_{m} | M]$.

b. What does the formula $\text{rref}[\mathbf{A} \mid \mathbf{AB}] = [\mathbf{I}_n \mid \mathbf{B}]$ tell you if $\mathbf{B} = \mathbf{A}^{-1}$?

[Note: The result in part (a) is used in proving that det(AB) = det(A)det(B) for $n \times n$ matrices A and B.]

Problem 12. (6.2/40) If **A** is an orthogonal matrix, what are the possible values of det(**A**)?

Problem 13. (6.3/7) Find the area of the following region:



Problem 14. (6.3/13) Find the area (or 2-volume) of the parallelogram (or 2-parallelepiped) defined by the vectors

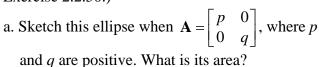
$$\begin{bmatrix} 1 \\ 1 \\ 1 \\ 1 \end{bmatrix}$$
 and
$$\begin{bmatrix} 1 \\ 2 \\ 3 \\ 4 \end{bmatrix}$$
.

Problem 15. (6.3/14) Find the 3-volume of the 3-parallepipied defined by the vectors

$$\begin{bmatrix} 1 \\ 0 \\ 0 \\ 0 \end{bmatrix}, \begin{bmatrix} 1 \\ 1 \\ 1 \\ 1 \end{bmatrix}, \begin{bmatrix} 1 \\ 2 \\ 3 \\ 4 \end{bmatrix}.$$

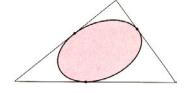
Ω

Problem 16. (6.3/18) If $T(\mathbf{x}) = \mathbf{A}\mathbf{x}$ is an invertible linear transformation from \mathbf{R}^2 to \mathbf{R}^2 , then the image $T(\Omega)$ of the unit circle Ω is an ellipse. (See Exercise 2.2.50.)



- b. For an arbitrary invertible transformation $T(\mathbf{x}) = \mathbf{A}\mathbf{x}$, denote the lengths of the semi-major and semi-minor axes of $T(\Omega)$ by a and b, respectively. What is the relationship between a, b, and $\det(\mathbf{A})$?
- c. For the transformation $T(\mathbf{x}) = \begin{bmatrix} 3 & 1 \\ 1 & 3 \end{bmatrix} \mathbf{x}$, sketch this ellipse and determine its axes. *Hint*: Consider $T \begin{bmatrix} 1 \\ 1 \end{bmatrix}$ and $T \begin{bmatrix} 1 \\ -1 \end{bmatrix}$.

Problem 17. (6.3/24) Use Cramer's rule to solve the system $\begin{cases} 2x+3y = 8 \\ 4y+5z = 3 \\ 6x +7z = -1 \end{cases}.$



 $T(\Omega)$

Problem 18. (6.3/48) What is the area of the largest ellipse you can inscribe into a triangle with side lengths 3, 4, and 5. *Hint*: The largest ellipse you can inscribe into an equilateral triangle is a circle.

For additional practice: Section 6.1:

9. Find the determinant of the matrix $\begin{bmatrix} 0 & 1 & 2 \\ 7 & 8 & 3 \\ 6 & 5 & 4 \end{bmatrix}$ and determine if this matrix is invertible.

In Exercises 16 and 17, use the determinant to find out for which values of the constant k the matrix is invertible.

16.
$$\begin{bmatrix} 1 & 2 & 3 \\ 4 & k & 5 \\ 6 & 7 & 8 \end{bmatrix}$$
 17.
$$\begin{bmatrix} 1 & 1 & 1 \\ 1 & k & -1 \\ 1 & k^2 & 1 \end{bmatrix}$$

43. If **A** is an $n \times n$ matrix and k is an arbitrary constant, what is the relationship between $\det(\mathbf{A})$ and $\det(-\mathbf{A})$?

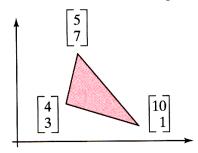
2

Section 6.2:

- 5. Use Gaussian elimination, i.e. row reduction, to find the determinant of the matrix $\begin{bmatrix} 0 & 2 & 3 & 4 \\ 0 & 0 & 0 & 4 \\ 1 & 2 & 3 & 4 \\ 0 & 0 & 3 & 4 \end{bmatrix}$
- 41. Consider a skew-symmetric $n \times n$ matrix **A**, where n is odd. Show that **A** is noninvertible, by showing that $\det(\mathbf{A}) = 0$.
- 43. Consider two vectors \mathbf{v} and \mathbf{w} in \mathbf{R}^n . Form the matrix $\mathbf{A} = \begin{bmatrix} \mathbf{v} & \mathbf{w} \end{bmatrix}$. Express $\det(\mathbf{A}^T \mathbf{A})$ in terms of $\|\mathbf{v}\|$, $\|\mathbf{w}\|$, and $\mathbf{v} \cdot \mathbf{w}$. What can you say about the sign of the result?

Section 6.3:

3. Find the area of the following triangle:



- 19. A basis \mathbf{v}_1 , \mathbf{v}_2 , \mathbf{v}_3 of \mathbf{R}^3 is called positively oriented if \mathbf{v}_1 encloses an acute angle with $\mathbf{v}_2 \times \mathbf{v}_3$. Illustrate this definition with a sketch. Show that the basis is positively oriented if (and only if) $\det \begin{bmatrix} \mathbf{v}_1 & \mathbf{v}_2 & \mathbf{v}_3 \end{bmatrix}$ is positive.
- 20. We say that a linear transformation T from \mathbf{R}^3 to \mathbf{R}^3 preserves orientation if it transforms any positively oriented basis into another positively oriented basis. (See Exercise 19.) Explain why a linear transformation $T(\mathbf{x}) = \mathbf{A}\mathbf{x}$ preserves orientation if (and only if) $\det(\mathbf{A})$ is positive.
- 23. Use Cramer's rule to solve the system $\begin{cases} 5x_1 3x_2 = 1 \\ -6x_1 + 7x_2 = 0 \end{cases}$.

Chapter 6 True/False Exercises

3

- 1. If $A = \begin{bmatrix} \vec{u} & \vec{v} & \vec{w} \end{bmatrix}$ is any 3×3 matrix, then $\det A = \vec{u} \cdot (\vec{v} \times \vec{w})$.
- 2. det(4A) = 4 det A for all 4×4 matrices A.
- 3. det(A + B) = det A + det B for all 5×5 matrices A and B.
- The equation det(-A) = det A holds for all 6 x 6 matrices.
- If all the entries of a 7 x 7 matrix A are 7, then det A must be 7⁷.
- An 8 × 8 matrix fails to be invertible if (and only if) its determinant is nonzero.
- If B is obtained be multiplying a column of A by 9, then the equation det B = 9 det A must hold.
- 8. $\det(A^{10}) = (\det A)^{10}$ for all 10×10 matrices A.
- The determinant of any diagonal n × n matrix is the product of its diagonal entries.

10. If matrix B is obtained by swapping two rows of an $n \times n$ matrix A, then the equation det $B = -\det A$ must hold.

11. Matrix
$$\begin{bmatrix} 9 & 100 & 3 & 7 \\ 5 & 4 & 100 & 8 \\ 100 & 9 & 8 & 7 \\ 6 & 5 & 4 & 100 \end{bmatrix}$$
 is invertible

- 12. If A is an invertible $n \times n$ matrix, then $det(A^T)$ must equal $det(A^{-1})$.
- If the determinant of a 4 x 4 matrix A is 4, then its rank must be 4.
- There exists a nonzero 4 × 4 matrix A such that det A = det(4A).
- 15. If two $n \times n$ matrices A and B are similar, then the equation det $A = \det B$ must hold.
- 16. The determinant of all orthogonal matrices is 1.
- 17. If A is any $n \times n$ matrix, then $\det(AA^T) = \det(A^TA)$.

- 18. There exists an invertible matrix of the form $\begin{bmatrix} a & e & f & j \\ b & 0 & g & 0 \\ c & 0 & h & 0 \\ d & 0 & i & 0 \end{bmatrix}.$
- 19. The matrix $\begin{bmatrix} k^2 & 1 & 4 \\ k & -1 & -2 \\ 1 & 1 & 1 \end{bmatrix}$ is invertible for all positive constants k.

20. det
$$\begin{bmatrix} 0 & 1 & 0 & 0 \\ 0 & 0 & 1 & 0 \\ 0 & 0 & 0 & 1 \\ 1 & 0 & 0 & 0 \end{bmatrix} = 1.$$

- There exists a 4 × 4 matrix A whose entries are all 1 or -1, and such that det A = 16.
- 22. If the determinant of a 2 × 2 matrix A is 4, then the inequality $||A\vec{v}|| \le 4||\vec{v}||$ must hold for all vectors \vec{v} in \mathbb{R}^2 .
- 23. If $A = \begin{bmatrix} \vec{u} & \vec{v} & \vec{w} \end{bmatrix}$ is a 3×3 matrix, then the formula $det(A) = \vec{v} \cdot (\vec{u} \times \vec{w})$ must hold.
- 24. There exist invertible 2 × 2 matrices A and B such that det(A + B) = det A + det B.
- 25. If all the entries of a square matrix are 1 or 0, then det A must be 1, 0, or −1.
- 26. If all the entries of a square matrix A are integers and det A = 1, then the entries of matrix A⁻¹ must be integers as well.
- 27. If all the columns of a square matrix A are unit vectors, then the determinant of A must be less than or equal to 1.
- If A is any noninvertible square matrix, then det A = det(rref A).
- If the determinant of a square matrix is -1, then A must be an orthogonal matrix.
- If all the entries of an invertible matrix A are integers, then the entries of A⁻¹ must be integers as well.
- There exist invertible 3 × 3 matrices A and S such that S⁻¹AS = 2A.
- There exist invertible 3 × 3 matrices A and S such that S^TAS = -A.

- 33. If A is any symmetric matrix, then det A = 1 or det A = -1.
- 34. If A is any skew-symmetric 4 × 4 matrix, then det A = 0.
- 35. If det A = det B for two n × n matrices A and B, then A must be similar to B.
- 36. Suppose A is an n × n matrix and B is obtained from A by swapping two rows of A. If det B < det A, then A must be invertible.
- 37. If an $n \times n$ matrix A is invertible, then there must be an $(n-1) \times (n-1)$ submatrix of A (obtained by deleting a row and a column of A) that is invertible as well.
- 38. If all the entries of matrices A and A⁻¹ are integers, then the equation det A = det(A⁻¹) must hold.
- If a square matrix A is invertible, then its classical adjoint adj(A) is invertible as well.
- **40.** There exists a 3×3 matrix A such that $A^2 = -I_3$.
- If all the diagonal entries of an n x n matrix A are odd integers and all the other entries are even integers, then A must be an invertible matrix.
- 42. If all the diagonal entries of an n × n matrix A are even integers and all the other entries are odd integers, then A must be an invertible matrix.
- 43. For every nonzero 2 × 2 matrix A there exists a 2 × 2 matrix B such that det(A + B) ≠ det A + det B.
- 44. If A is a 4 x 4 matrix whose entries are all 1 or −1, then det A must be divisible by 8 [i.e., det A = 8k for some integer k].
- 45. If A is an invertible n × n matrix, then A must commute with its adjoint, adj(A).
- 46. There exists a real number k such that the matrix

is invertible.

4

47. If A and B are orthogonal n × n matrices such that det A = det B = 1, then matrices A and B must commute.