Math E-21b – Spring 2024 – Homework #8

Problem 1. (6.1/18) Use the determinant to find out for which values of the constant k the matrix $\begin{vmatrix} 3 & 2k & 5 \\ 9 & 7 & 5 \end{vmatrix}$

is invertible.

In Exercises 26 and 30, use the determinant to find out for which values of the constant λ the matrix $\mathbf{A} - \lambda \mathbf{I}_n$ fails to be invertible.

Problem 2. (6.1/26)
$$A = \begin{bmatrix} 4 & 2 \\ 2 & 7 \end{bmatrix}$$
Problem 3. (6.1/30) $A = \begin{bmatrix} 4 & 2 & 0 \\ 4 & 6 & 0 \\ 5 & 2 & 3 \end{bmatrix}$

Problem 4. (6.1/34) Find the determinant of the matrix

$$\begin{bmatrix}
 4 & 5 & 0 & 0 \\
 3 & 6 & 0 & 0 \\
 2 & 7 & 1 & 4 \\
 1 & 8 & 2 & 3
 \end{bmatrix}$$

 [Do it without the calculator.]

- **Problem 5.** (6.1/44) If A is an $n \times n$ matrix and k is an arbitrary constant, what is the relationship between $det(\mathbf{A})$ and $det(k\mathbf{A})$?
- Problem 6. (6.2/6) Use Gaussian elimination, i.e. row reduction, to find the determinant of the matrix

[1	1	1	1	
1	1	4	4	
1 1 1 1	-1	2	4 -2 -8	•
1	-1	8	-8_	

Problem 7. (6.2/17) Find the determinant of the linear transformation T(f) = 2f + 3f' from P_2 to P_2 .

Problem 8. (6.2/18) Find the determinant of the linear transformation (T(f))(t) = f(3t-2) from P_2 to P_2 .

Problem 9. (6.2/25) Find the determinant of the linear transformation $T(\mathbf{M}) = \begin{bmatrix} 2 & 3 \\ 0 & 4 \end{bmatrix} \mathbf{M}$ from the space V of 2×2 upper triangular matrices to V.

Problem 10. (6.2/26) Find the determinant of the linear transformation $T(\mathbf{M}) = \begin{bmatrix} 1 & 2 \\ 2 & 3 \end{bmatrix} \mathbf{M} + \mathbf{M} \begin{bmatrix} 1 & 2 \\ 2 & 3 \end{bmatrix}$ from the space V of symmetric 2×2 matrices to V.

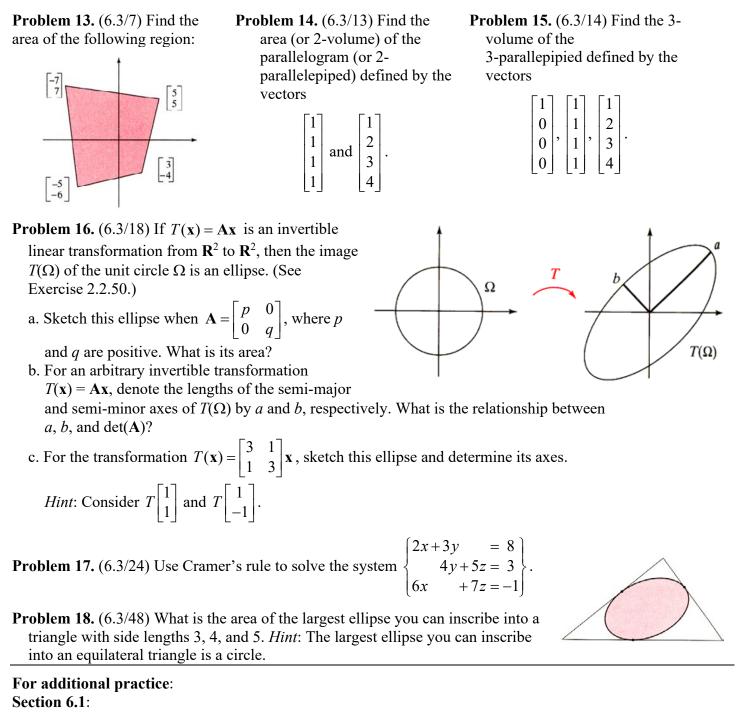
Problem 11. (6.2/34) a. For an invertible $n \times n$ matrix **A** and an arbitrary $n \times n$ matrix **B**, show that $\operatorname{rref}[\mathbf{A} | \mathbf{AB}] = [\mathbf{I}_n | \mathbf{B}].$

Hint: The left part of rref[A | AB] is rref(A) = I_n. Write rref[A | AB] = [I_n | M]; we have to show that $\mathbf{M} = \mathbf{B}$. To demonstrate this, note that the columns of matrix $\begin{vmatrix} \mathbf{B} \\ -\mathbf{I}_{\mathbf{A}} \end{vmatrix}$ are in the kernel of $[\mathbf{A} | \mathbf{AB}]$ and therefore in the kernel of $[\mathbf{I}_n | \mathbf{M}]$.

b. What does the formula $\operatorname{rref}[\mathbf{A} | \mathbf{AB}] = [\mathbf{I}_n | \mathbf{B}]$ tell you if $\mathbf{B} = \mathbf{A}^{-1}$?

[Note: The result in part (a) is used in proving that det(AB) = det(A)det(B) for $n \times n$ matrices A and B.]

Problem 12. (6.2/40) If A is an orthogonal matrix, what are the possible values of det(A)?



9. Find the determinant of the matrix $\begin{bmatrix} 0 & 1 & 2 \\ 7 & 8 & 3 \\ 6 & 5 & 4 \end{bmatrix}$ and determine if this matrix is invertible.

In Exercises 16 and 17, use the determinant to find out for which values of the constant k the matrix is invertible.

	[1	2	3]		[1	1	1 -1
16.	4	k	5	17.	1	k	-1
16.	6	7	8		1	k^2	1

43. If A is an $n \times n$ matrix and k is an arbitrary constant, what is the relationship between det(A) and det(-A)?

Section 6.2:

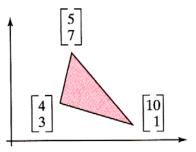
5. Use Gaussian elimination, i.e. row reduction, to find the determinant of the matrix

٢٥	2	3	4]	[1	1	1	1	1	
1			4				2		
			<u> </u>				3		
				1	1	1	4	4	
0	U	3	4	1	1	1	1	5	

- 41. Consider a skew-symmetric $n \times n$ matrix A, where n is odd. Show that A is noninvertible, by showing that $det(\mathbf{A}) = 0.$
- 43. Consider two vectors v and w in \mathbf{R}^n . Form the matrix $\mathbf{A} = \begin{bmatrix} \mathbf{v} & \mathbf{w} \end{bmatrix}$. Express det $(\mathbf{A}^T \mathbf{A})$ in terms of $\|\mathbf{v}\|$, $\|\mathbf{w}\|$, and $\mathbf{v} \cdot \mathbf{w}$. What can you say about the sign of the result?

Section 6.3:

3. Find the area of the following triangle:



23. Use Cramer's rule to solve the system $\begin{cases} 5x_1 - 3x_2 = 1 \\ -6x_1 + 7x_2 = 0 \end{cases}$.

9. Use Gaussian elimination, i.e. row reduction, to find the determinant of the matrix

1	1	1	1	1	
1	2	2	2	2	
1	1	3	3	2 3	
1	1	1	4	4	
1	1	1	1	5	

- 19. A basis \mathbf{v}_1 , \mathbf{v}_2 , \mathbf{v}_3 of \mathbf{R}^3 is called positively oriented if \mathbf{v}_1 encloses an acute angle with $\mathbf{v}_2 \times \mathbf{v}_3$. Illustrate this definition with a sketch. Show that the basis is positively oriented if (and only if) det $\begin{bmatrix} \mathbf{v}_1 & \mathbf{v}_2 & \mathbf{v}_3 \end{bmatrix}$ is positive.
 - 20. We say that a linear transformation T from \mathbf{R}^3 to \mathbf{R}^3 preserves orientation if it transforms any positively oriented basis into another positively oriented basis. (See Exercise 19.) Explain why a linear transformation $T(\mathbf{x}) = \mathbf{A}\mathbf{x}$ preserves orientation if (and only if) det(A) is positive.

Chapter 6 True/False Exercises

- 1. If $A = \begin{bmatrix} \vec{u} & \vec{v} & \vec{w} \end{bmatrix}$ is any 3×3 matrix, then det A = $\vec{u} \cdot (\vec{v} \times \vec{w}).$
- det(4A) = 4 det A for all 4 × 4 matrices A.
- 3. det(A + B) = det A + det B for all 5×5 matrices A and B.
- 4. The equation det(-A) = det A holds for all 6×6 matrices.
- If all the entries of a 7 × 7 matrix A are 7, then det A must be 77.
- 6. An 8 × 8 matrix fails to be invertible if (and only if) its determinant is nonzero.
- 7. If B is obtained be multiplying a column of A by 9, then the equation det $B = 9 \det A$ must hold.
- 8. $det(A^{10}) = (det A)^{10}$ for all 10×10 matrices A.
- 9. The determinant of any diagonal $n \times n$ matrix is the product of its diagonal entries.

10. If matrix B is obtained by swapping two rows of an $n \times n$ matrix A, then the equation det $B = -\det A$ must hold.

11.	Matrix	9 5 100	100 4 9	3 100 8		is invertible.
		6	5	4	100	

- 12. If A is an invertible $n \times n$ matrix, then det (A^T) must equal det (A^{-1}) .
- If the determinant of a 4 × 4 matrix A is 4, then its rank must be 4.
- 14. There exists a nonzero 4×4 matrix A such that det A =det(4A).
- 15. If two $n \times n$ matrices A and B are similar, then the equation det $A = \det B$ must hold.
- 16. The determinant of all orthogonal matrices is 1.
- 17. If A is any $n \times n$ matrix, then $det(AA^T) = det(A^TA)$.

- 18. There exists an invertible matrix of the form e f i b 0 8 0 с 0 0 h d 0 i **19.** The matrix k-1is invertible for all posi- $^{-2}$ tive constants k. 0 1 0 0 **20.** det $\begin{bmatrix} 0 & 0 & 1 & 0 \\ 0 & 0 & 0 & 1 \\ 1 & 0 & 0 & 0 \end{bmatrix} = 1.$
- There exists a 4 × 4 matrix A whose entries are all 1 or -1, and such that det A = 16.
- 22. If the determinant of a 2 × 2 matrix A is 4, then the inequality $||A\vec{v}|| \le 4||\vec{v}||$ must hold for all vectors \vec{v} in \mathbb{R}^2 .
- 23. If $A = \begin{bmatrix} \vec{u} & \vec{v} & \vec{w} \end{bmatrix}$ is a 3 × 3 matrix, then the formula det $(A) = \vec{v} \cdot (\vec{u} \times \vec{w})$ must hold.
- 24. There exist invertible 2 × 2 matrices A and B such that det(A + B) = det A + det B.
- If all the entries of a square matrix are 1 or 0, then det A must be 1, 0, or -1.
- 26. If all the entries of a square matrix A are integers and det A = 1, then the entries of matrix A⁻¹ must be integers as well.
- If all the columns of a square matrix A are unit vectors, then the determinant of A must be less than or equal to 1.
- If A is any noninvertible square matrix, then det A = det(rref A).
- If the determinant of a square matrix is -1, then A must be an orthogonal matrix.
- If all the entries of an invertible matrix A are integers, then the entries of A⁻¹ must be integers as well.
- There exist invertible 3 × 3 matrices A and S such that S⁻¹AS = 2A.
- 32. There exist invertible 3×3 matrices A and S such that $S^T A S = -A$.

- 33. If A is any symmetric matrix, then det A = 1 or det A = -1.
- **34.** If A is any skew-symmetric 4×4 matrix, then det A = 0.
- 35. If det A = det B for two n × n matrices A and B, then A must be similar to B.
- 36. Suppose A is an n × n matrix and B is obtained from A by swapping two rows of A. If det B < det A, then A must be invertible.
- 37. If an n × n matrix A is invertible, then there must be an (n-1) × (n-1) submatrix of A (obtained by deleting a row and a column of A) that is invertible as well.
- 38. If all the entries of matrices A and A⁻¹ are integers, then the equation det A = det(A⁻¹) must hold.
- If a square matrix A is invertible, then its classical adjoint adj(A) is invertible as well.
- 40. There exists a 3 × 3 matrix A such that A² = −I₃.
- 41. If all the diagonal entries of an n × n matrix A are odd integers and all the other entries are even integers, then A must be an invertible matrix.
- 42. If all the diagonal entries of an n × n matrix A are even integers and all the other entries are odd integers, then A must be an invertible matrix.
- 43. For every nonzero 2 × 2 matrix A there exists a 2 × 2 matrix B such that det(A + B) ≠ det A + det B.
- 44. If A is a 4 × 4 matrix whose entries are all 1 or −1, then det A must be divisible by 8 [i.e., det A = 8k for some integer k].
- If A is an invertible n × n matrix, then A must commute with its adjoint, adj(A).
- 46. There exists a real number k such that the matrix

1	2	3	4
5 8 0	6	k	4 7
8	9	8	7
0	0	6	5

is invertible.

47. If A and B are orthogonal n × n matrices such that det A = det B = 1, then matrices A and B must commute.