Math E-21b – Spring 2025 – Homework #6

Section 5.1:

Problem 1. (5.1/12) Give an algebraic proof for the *triangle inequality* $\|\mathbf{v} + \mathbf{w}\| \le \|\mathbf{v}\| + \|\mathbf{w}\|$. Draw a sketch. [Hint: Expand $\|\mathbf{v} + \mathbf{w}\|^2 = (\mathbf{v} + \mathbf{w}) \cdot (\mathbf{v} + \mathbf{w})$. Then use the Cauchy-Schwarz inequality $(\|\mathbf{v} \cdot \mathbf{w}\| \le \|\mathbf{v}\| \|\mathbf{w}\|)$.]

Problem 2. (5.1/15) Consider the vector $\mathbf{v} = \begin{bmatrix} 1 \\ 2 \\ 3 \\ 4 \end{bmatrix}$ in \mathbf{R}^4 . Find a basis of the subspace of \mathbf{R}^4 consisting of all vectors perpendicular (orthogonal) to \mathbf{v} .

Problem 3. (5.1/16) Consider the vectors $\mathbf{u}_1 = \begin{bmatrix} \frac{1}{2} \\ \frac{1}{2} \\ \frac{1}{2} \\ \frac{1}{2} \end{bmatrix}$, $\mathbf{u}_2 = \begin{bmatrix} \frac{1}{2} \\ \frac{1}{2} \\ -\frac{1}{2} \\ -\frac{1}{2} \end{bmatrix}$, $\mathbf{u}_3 = \begin{bmatrix} \frac{1}{2} \\ -\frac{1}{2} \\ \frac{1}{2} \\ -\frac{1}{2} \end{bmatrix}$ in \mathbf{R}^4 . Can you find a vector \mathbf{u}_4

in \mathbf{R}^4 such that the vectors \mathbf{u}_1 , \mathbf{u}_2 , \mathbf{u}_3 , \mathbf{u}_4 are orthonormal? If so, how many such vectors are there?

Problem 4. (5.1/17) Find a basis for W^{\perp} , where $W = \text{span} \begin{Bmatrix} \begin{bmatrix} 1 \\ 2 \\ 3 \\ 4 \end{bmatrix}, \begin{bmatrix} 5 \\ 6 \\ 7 \\ 8 \end{bmatrix}$.

Problem 5. (5.1/18) Here is an infinite dimension version of Euclidean space: In the space of all infinite sequences, consider the subspace l_2 of square-summable sequences [i.e., those sequences $(x_1, x_2,...)$ for which the infinite series $x_1^2 + x_2^2 + \cdots$ converges]. For \mathbf{x} and \mathbf{y} in l_2 , we define $\|\mathbf{x}\| = \sqrt{x_1^2 + x_2^2 + \cdots}$ and $\mathbf{x} \cdot \mathbf{y} = x_1 y_1 + x_2 y_2 + \cdots$.

(Why does the series $x_1 y_1 + x_2 y_2 + \cdots$ converge?)

- a. Check that $\mathbf{x} = (1, \frac{1}{2}, \frac{1}{4}, \frac{1}{8}, \frac{1}{16}, \dots)$ is in l_2 , and find $\|\mathbf{x}\|$. Recall the formula for the geometric series: $1 + a + a^2 + a^3 + \dots = \frac{1}{1-a}$, if -1 < a < 1.
- b. Find the angle between (1,0,0,...) and $(1,\frac{1}{2},\frac{1}{4},\frac{1}{8},...)$.
- c. Give an example of a sequence $(x_1, x_2,...)$ that converges to 0 (i.e., $\lim_{n\to\infty} x_n = 0$) but does not belong to l_2 .
- d. Let L be the subspace of l_2 spanned by $(1, \frac{1}{2}, \frac{1}{4}, \frac{1}{8}, \ldots)$. Find the orthogonal projection of $(1, 0, 0, \ldots)$ onto L.

The Hilbert space l_2 was initially used mostly in physics: Werner Heisenberg's formulation of quantum mechanics is in terms of l_2 . Today, this space is used in many other applications, including economics. (See, for example, the work of the economist Andreu Mas-Colell of the University of Barcelona.)

Note: Problems 6 and 7 (below) use the fact that if $\{\mathbf{u}_1, \mathbf{u}_2, \dots, \mathbf{u}_k\}$ is an <u>orthonormal</u> basis for a subspace V of \mathbf{R}^n , then the orthogonal projection onto V of any vector \mathbf{x} in \mathbf{R}^n is given by $\text{Proj}_V \mathbf{x} = (\mathbf{x} \cdot \mathbf{u}_1)\mathbf{u}_1 + \dots + (\mathbf{x} \cdot \mathbf{u}_k)\mathbf{u}_k$.

Problem 6. (5.1/26)

Find the orthogonal projection of $\begin{bmatrix} 49 \\ 49 \\ 49 \end{bmatrix}$ onto the subspace of \mathbf{R}^3 spanned by $\begin{bmatrix} 2 \\ 3 \\ 6 \end{bmatrix}$ and $\begin{bmatrix} 3 \\ -6 \\ 2 \end{bmatrix}$.

Problem 7. (5.1/28)

Find the orthogonal projection of $\begin{bmatrix} 1\\0\\0\\0 \end{bmatrix}$ onto the subspace of \mathbf{R}^4 spanned by $\begin{bmatrix} 1\\1\\1\\1 \end{bmatrix}$, $\begin{bmatrix} 1\\1\\-1\\-1 \end{bmatrix}$, and $\begin{bmatrix} 1\\-1\\-1\\1 \end{bmatrix}$.

Section 5.4:

Problem 8. (5.4/2) Consider the subspace im(**A**) of \mathbf{R}^3 , where $\mathbf{A} = \begin{bmatrix} 1 & 1 \\ 1 & 2 \\ 1 & 3 \end{bmatrix}$. Find a basis of $\ker(\mathbf{A}^T)$, and draw a sketch illustrating the formula $(im \mathbf{A})^{\perp} = ker(\mathbf{A}^{T})$ in this case.

Problem 9. (5.4/4) Let **A** be an $n \times m$ matrix. Is the formula $(\ker \mathbf{A})^{\perp} = \operatorname{im}(\mathbf{A}^{\mathsf{T}})$ necessarily true? Explain.

Problem 10. (5.4/5)

Let V be the solution space of the linear system $\begin{cases} x_1 + x_2 + x_3 + x_4 = 0 \\ x_1 + 2x_2 + 5x_3 + 4x_4 = 0 \end{cases}$. Find a basis for V^{\(\perp}}.

Problem 11. (5.4/16) Use the formula $(\text{im } \mathbf{A})^{\perp} = \ker(\mathbf{A}^{T})$ to prove the equation $\operatorname{rank}(\mathbf{A}) = \operatorname{rank}(\mathbf{A}^{T})$.

Problem 12. For the matrix $\mathbf{A} = \begin{bmatrix} 1 & 2 & 3 \\ -1 & 1 & 0 \\ 1 & 3 & 4 \end{bmatrix}$, find a basis for <u>each</u> of the *Four Fundamental Subspaces*:

- (a) im(**A**)
- (b) $ker(\mathbf{A})$ (c) $im(\mathbf{A}^T)$ (d) $ker(\mathbf{A}^T)$

For additional practice:

Section 5.1:

- 3. Find the length of the vector $\mathbf{v} = \begin{bmatrix} 2 \\ 3 \\ 4 \\ 5 \end{bmatrix}$.

 5. Find the angle between the vectors $\mathbf{u} = \begin{bmatrix} 1 \\ 2 \\ 3 \end{bmatrix}$ and $\mathbf{v} = \begin{bmatrix} 2 \\ 3 \\ 4 \end{bmatrix}$.
- 23. Prove Fact 5.1.8d: $(V^{\perp})^{\perp} = V$ for any subspace V of \mathbb{R}^n . Hint: Show that $V \subseteq (V^{\perp})^{\perp}$ by the definition of V^{\perp} ; then show that $\dim(V) = \dim[(V^{\perp})^{\perp}]$, by Fact 5.1.8c, i.e. that the dimensions of V and V^{\perp} sum to n.
- 29. Consider the orthonormal vectors $\mathbf{u}_1, \mathbf{u}_2, \mathbf{u}_3, \mathbf{u}_4, \mathbf{u}_5$ in \mathbf{R}^{10} . Find the length of the vector $\mathbf{x} = 7\mathbf{u}_1 - 3\mathbf{u}_2 + 2\mathbf{u}_3 + \mathbf{u}_4 - \mathbf{u}_5$.

Section 5.4:

1. Consider the subspace im(**A**) of \mathbf{R}^2 , where $\mathbf{A} = \begin{bmatrix} 2 & 4 \\ 3 & 6 \end{bmatrix}$. Find a basis of $\ker(\mathbf{A}^T)$, and draw a sketch illustrating the formula $(im \mathbf{A})^{\perp} = ker(\mathbf{A}^{T})$ in this case.

2