Math E-21b - Spring 2024 - Homework \#6

Section 5.1:

Problem 1. (5.1/12) Give an algebraic proof for the triangle inequality $\|\mathbf{v}+\mathbf{w}\| \leq\|\mathbf{v}\|+\|\mathbf{w}\|$. Draw a sketch. [Hint: Expand $\|\mathbf{v}+\mathbf{w}\|^{2}=(\mathbf{v}+\mathbf{w}) \cdot(\mathbf{v}+\mathbf{w})$. Then use the Cauchy-Schwarz inequality $(|\mathbf{v} \cdot \mathbf{w}| \leq\|\mathbf{v}\|\|\mathbf{w}\|)$.]

Problem 2. (5.1/15) Consider the vector $\mathbf{v}=\left[\begin{array}{l}1 \\ 2 \\ 3 \\ 4\end{array}\right]$ in \mathbf{R}^{4}. Find a basis of the subspace of \mathbf{R}^{4} consisting of all vectors perpendicular (orthogonal) to \mathbf{v}.
Problem 3. (5.1/16) Consider the vectors $\mathbf{u}_{1}=\left[\begin{array}{c}1 / 2 \\ 1 / 2 \\ 1 / 2 \\ 1 / 2\end{array}\right], \mathbf{u}_{2}=\left[\begin{array}{c}1 / 2 \\ 1 / 2 \\ -1 / 2 \\ -1 / 2\end{array}\right], \mathbf{u}_{3}=\left[\begin{array}{c}1 / 2 \\ -1 / 2 \\ 1 / 2 \\ -1 / 2\end{array}\right]$ in \mathbf{R}^{4}. Can you find a vector \mathbf{u}_{4} in \mathbf{R}^{4} such that the vectors $\mathbf{u}_{1}, \mathbf{u}_{2}, \mathbf{u}_{3}, \mathbf{u}_{4}$ are orthonormal? If so, how many such vectors are there?

Problem 4. (5.1/17) Find a basis for W^{\perp}, where $W=\operatorname{span}\left\{\left[\begin{array}{l}1 \\ 2 \\ 3 \\ 4\end{array}\right],\left[\begin{array}{l}5 \\ 6 \\ 7 \\ 8\end{array}\right]\right\}$.
Problem 5. (5.1/18) Here is an infinite dimension version of Euclidean space: In the space of all infinite sequences, consider the subspace l_{2} of square-summable sequences [i.e., those sequences (x_{1}, x_{2}, \ldots) for which the infinite series $x_{1}^{2}+x_{2}^{2}+\cdots$ converges $]$. For \mathbf{x} and \mathbf{y} in l_{2}, we define $\|\mathbf{x}\|=\sqrt{x_{1}^{2}+x_{2}^{2}+\cdots}$ and $\mathbf{x} \cdot \mathbf{y}=x_{1} y_{1}+x_{2} y_{2}+\cdots$.
(Why does the series $x_{1} y_{1}+x_{2} y_{2}+\cdots$ converge?)
a. Check that $\mathbf{x}=\left(1, \frac{1}{2}, \frac{1}{4}, \frac{1}{8}, \frac{1}{16}, \ldots\right)$ is in l_{2}, and find $\|\mathbf{x}\|$. Recall the formula for the geometric series:

$$
1+a+a^{2}+a^{3}+\cdots=\frac{1}{1-a}, \text { if }-1<a<1
$$

b. Find the angle between $(1,0,0, \ldots)$ and $\left(1, \frac{1}{2}, \frac{1}{4}, \frac{1}{8}, \ldots\right)$.
c. Give an example of a sequence $\left(x_{1}, x_{2}, \ldots\right)$ that converges to 0 (i.e., $\lim _{n \rightarrow \infty} x_{n}=0$) but does not belong to l_{2}.
d. Let L be the subspace of l_{2} spanned by $\left(1, \frac{1}{2}, \frac{1}{4}, \frac{1}{8}, \ldots\right)$. Find the orthogonal projection of $(1,0,0, \ldots)$ onto L.

The Hilbert space l_{2} was initially used mostly in physics: Werner Heisenberg's formulation of quantum mechanics is in terms of l_{2}. Today, this space is used in many other applications, including economics. (See, for example, the work of the economist Andreu Mas-Colell of the University of Barcelona.)

Note: Problems 6 and 7 (below) use the fact that if $\left\{\mathbf{u}_{1}, \mathbf{u}_{2}, \cdots, \mathbf{u}_{k}\right\}$ is an orthonormal basis for a subspace
V of \mathbf{R}^{n}, then the orthogonal projection onto V of any vector \mathbf{x} in \mathbf{R}^{n} is given by

$$
\operatorname{Proj}_{V} \mathbf{x}=\left(\mathbf{x} \cdot \mathbf{u}_{1}\right) \mathbf{u}_{1}+\cdots+\left(\mathbf{x} \cdot \mathbf{u}_{k}\right) \mathbf{u}_{k} .
$$

Problem 6. (5.1/26)
Find the orthogonal projection of $\left[\begin{array}{l}49 \\ 49 \\ 49\end{array}\right]$ onto the subspace of \mathbf{R}^{3} spanned by $\left[\begin{array}{c}2 \\ 3 \\ 6\end{array}\right]$ and $\left[\begin{array}{c}3 \\ -6 \\ 2\end{array}\right]$.
Problem 7. (5.1/28)
Find the orthogonal projection of $\left[\begin{array}{l}1 \\ 0 \\ 0 \\ 0\end{array}\right]$ onto the subspace of \mathbf{R}^{4} spanned by $\left[\begin{array}{l}1 \\ 1 \\ 1 \\ 1\end{array}\right],\left[\begin{array}{c}1 \\ 1 \\ -1 \\ -1\end{array}\right]$, and $\left[\begin{array}{c}1 \\ -1 \\ -1 \\ 1\end{array}\right]$.

Section 5.4:

Problem 8. (5.4/2) Consider the subspace $\operatorname{im}(\mathbf{A})$ of \mathbf{R}^{3}, where $\mathbf{A}=\left[\begin{array}{ll}1 & 1 \\ 1 & 2 \\ 1 & 3\end{array}\right]$. Find a basis of $\operatorname{ker}\left(\mathbf{A}^{\mathrm{T}}\right)$, and draw a sketch illustrating the formula $(\operatorname{im} \mathbf{A})^{\perp}=\operatorname{ker}\left(\mathbf{A}^{\mathrm{T}}\right)$ in this case.

Problem 9. (5.4/4) Let \mathbf{A} be an $n \times m$ matrix. Is the formula $(\operatorname{ker} \mathbf{A})^{\perp}=i m\left(\mathbf{A}^{\mathrm{T}}\right)$ necessarily true? Explain.
Problem 10. (5.4/5)
Let V be the solution space of the linear system $\left\{\begin{array}{l}x_{1}+x_{2}+x_{3}+x_{4}=0 \\ x_{1}+2 x_{2}+5 x_{3}+4 x_{4}=0\end{array}\right\}$. Find a basis for V^{\perp}.
Problem 11. (5.4/16) Use the formula $(\operatorname{im} \mathbf{A})^{\perp}=\operatorname{ker}\left(\mathbf{A}^{\mathrm{T}}\right)$ to prove the equation $\operatorname{rank}(\mathbf{A})=\operatorname{rank}\left(\mathbf{A}^{\mathrm{T}}\right)$.
Problem 12. For the matrix $\mathbf{A}=\left[\begin{array}{ccc}1 & 2 & 3 \\ -1 & 1 & 0 \\ 1 & 3 & 4\end{array}\right]$, find a basis for each of the Four Fundamental Subspaces:
(a) $\operatorname{im}(\mathbf{A})$
(b) $\operatorname{ker}(\mathbf{A})$
(c) $\operatorname{im}\left(\mathbf{A}^{T}\right)$
(d) $\operatorname{ker}\left(\mathbf{A}^{\mathrm{T}}\right)$

For additional practice:

Section 5.1:

3. Find the length of the vector $\mathbf{v}=\left[\begin{array}{l}2 \\ 3 \\ 4 \\ 5\end{array}\right] . \quad$ 5. Find the angle between the vectors $\mathbf{u}=\left[\begin{array}{l}1 \\ 2 \\ 3\end{array}\right]$ and $\mathbf{v}=\left[\begin{array}{l}2 \\ 3 \\ 4\end{array}\right]$.
4. Prove Fact 5.1.8d: $\left(\mathrm{V}^{\perp}\right)^{\perp}=\mathrm{V}$ for any subspace V of \mathbf{R}^{n}. Hint: Show that $\mathrm{V} \subseteq\left(\mathrm{V}^{\perp}\right)^{\perp}$ by the definition of V^{\perp}; then show that $\operatorname{dim}(\mathrm{V})=\operatorname{dim}\left[\left(\mathrm{V}^{\perp}\right)^{\perp}\right]$, by Fact 5.1.8c, i.e. that the dimensions of V and V^{\perp} sum to n.
5. Consider the orthonormal vectors $\mathbf{u}_{1}, \mathbf{u}_{2}, \mathbf{u}_{3}, \mathbf{u}_{4}, \mathbf{u}_{5}$ in \mathbf{R}^{10}.

Find the length of the vector $\mathbf{x}=7 \mathbf{u}_{1}-3 \mathbf{u}_{2}+2 \mathbf{u}_{3}+\mathbf{u}_{4}-\mathbf{u}_{5}$.

Section 5.4:

1. Consider the subspace $\operatorname{im}(\mathbf{A})$ of \mathbf{R}^{2}, where $\mathbf{A}=\left[\begin{array}{ll}2 & 4 \\ 3 & 6\end{array}\right]$. Find a basis of $\operatorname{ker}\left(\mathbf{A}^{\mathrm{T}}\right)$, and draw a sketch illustrating the formula $(\operatorname{im} \mathbf{A})^{\perp}=\operatorname{ker}\left(\mathbf{A}^{\mathrm{T}}\right)$ in this case.
