Math E-21b – Spring 2024 – Homework #5

Problem 1. (3.4/60) Is the matrix $\begin{bmatrix} 1 & 0 \\ 0 & -1 \end{bmatrix}$ similar to the matrix $\begin{bmatrix} 0 & 1 \\ 1 & 0 \end{bmatrix}$?

[**Definition**: Two matrices **A** and **B** are called *similar* if $\mathbf{B} = \mathbf{S}^{-1}\mathbf{A}\mathbf{S}$ for some invertible matrix **S**, i.e. they represent the same linear transformation relative to different bases.]

Problem 2. (3.4/62) Find a basis \mathcal{B} of \mathbb{R}^2 such that the \mathcal{B} -matrix of the linear transformation $T(\mathbf{x}) = \begin{bmatrix} 1 & 2 \\ 4 & 3 \end{bmatrix} \mathbf{x}$

is
$$\mathbf{B} = \begin{bmatrix} 5 & 0 \\ 0 & -1 \end{bmatrix}$$
.

Problem 3. (3.4/70) Is there a basis \mathcal{B} of \mathbb{R}^2 such that the \mathcal{B} -matrix \mathbb{B} of the linear transformation

$$T(\mathbf{x}) = \begin{bmatrix} 0 & -1 \\ 1 & 0 \end{bmatrix} \mathbf{x}$$
 is upper triangular? *Hint*: Think about the first column of **B**.

Problem 4. (3.4/71) Suppose the matrix **A** is similar to **B**, with $\mathbf{B} = \mathbf{S}^{-1}\mathbf{A}\mathbf{S}$.

- a. Show that if x is in ker(B), then Sx is in ker(A).
- b. Show that $\operatorname{nullity}(\mathbf{A}) = \operatorname{nullity}(\mathbf{B})$. *Hint*: If $\{\mathbf{v}_1, \mathbf{v}_2, \dots, \mathbf{v}_p\}$ is a basis for $\ker(\mathbf{B})$, then the vectors $\{\mathbf{S}\mathbf{v}_1, \mathbf{S}\mathbf{v}_2, \dots, \mathbf{S}\mathbf{v}_p\}$ in $\ker(\mathbf{A})$ are linearly independent. Now reverse the roles of \mathbf{A} and \mathbf{B} .
- c. (3.4/72) If **A** is similar to **B**, what is the relationship between rank(**A**) and rank(**B**)? See exercise 71.

Problem 5. (3.4/73) Let L be the line in \mathbb{R}^3 spanned by the

vector
$$\mathbf{v} = \begin{bmatrix} 0.6 \\ 0.8 \\ 0 \end{bmatrix}$$
. Let T from \mathbf{R}^3 to \mathbf{R}^3 be the rotation about

this line through an angle of $\frac{\pi}{2}$, in the direction indicated in the accompanying sketch.

Find the matrix **A** such that $T(\mathbf{x}) = \mathbf{A}\mathbf{x}$.

$$\mathbf{v}_0 = \overrightarrow{OP_0}$$
, $\mathbf{v}_1 = \overrightarrow{OP_1}$, $\mathbf{v}_2 = \overrightarrow{OP_2}$, $\mathbf{v}_3 = \overrightarrow{OP_3}$.

- a. Find the sum $\mathbf{v}_0 + \mathbf{v}_1 + \mathbf{v}_2 + \mathbf{v}_3$.
- b. Find the coordinate vector of \mathbf{v}_0 with respect to the basis $\{\mathbf{v}_1,\mathbf{v}_2,\mathbf{v}_3\}$.
- c. Let T be the linear transformation with $T(\mathbf{v}_0) = \mathbf{v}_3$, $T(\mathbf{v}_3) = \mathbf{v}_1$, and $T(\mathbf{v}_1) = \mathbf{v}_0$. What is $T(\mathbf{v}_2)$? Describe the transformation T geometrically (as a reflection, rotation, projection, or whatever). Find the matrix \mathbf{B} of T with respect to the basis $\{\mathbf{v}_1, \mathbf{v}_2, \mathbf{v}_3\}$. What is \mathbf{B}^3 ? Explain.

Note: The same figure was used in HW3, Problem 6.

Find a basis for each of the spaces in Problems 7-9 and determine its dimension.

Problem 7. (4.1/20) The space of all matrices $\mathbf{A} = \begin{bmatrix} a & b \\ c & d \end{bmatrix}$ in $\mathbf{R}^{2\times 2}$ such that a+d=0.

Problem 8. (4.1/26) The space of all polynomials f(t) in P_3 such that f(1) = 0 and $\int_{-1}^{1} f(t) dt = 0$.

Problem 9. (4.1/30) The space of all 2×2 matrices **A** such that $\begin{vmatrix} 1 & 2 \\ 3 & 6 \end{vmatrix}$ **A** = $\begin{vmatrix} 0 & 0 \\ 0 & 0 \end{vmatrix}$.

Problem 10. a) (4.2/6) Is the transformation $T(\mathbf{M}) = \mathbf{M} \begin{bmatrix} 1 & 2 \\ 3 & 6 \end{bmatrix}$ from $\mathbf{R}^{2\times2}$ to $\mathbf{R}^{2\times2}$ linear?

If it is, determine whether it is an isomorphism.

- b) (4.2/52) Find the rank and nullity, and bases for the image and kernel of this transformation.
- **Problem 11.** a) (4.2/25) Is the transformation [T(f)](t) = f''(t) + 4f'(t) from P_2 to P_2 linear? If it is, determine whether it is an isomorphism.
 - b) (4.2/53) Find the image, rank, kernel and nullity of this transformation.
 - c) (4.3/22) Find the matrix of the linear transformation T(f) = f'' + 4f' from P_2 to P_2 relative to the basis $\mathcal{U} = \{1, t, t^2\}$.
- **Problem 12.** a) (4.3/27) Find the matrix **A** of the linear transformation [T(f)](t) = f(2t-1) from P_2 to P_2 relative to the basis $\mathcal{U} = \{1, t, t^2\}$.
 - b) (4.3/28) Find the matrix **B** of the linear transformation [T(f)](t) = f(2t-1) from P_2 to P_2 relative to the basis $\mathcal{B} = \{1, t-1, (t-1)^2\}$.
 - c) (4.3/47) Find the change of basis matrix **S** from the basis $\mathcal{B} = \{1, t-1, (t-1)^2\}$ to the "standard" basis $\mathcal{U} = \{1, t, t^2\}$ of P_2 . That is, find **S** such that $[f]_{\mathcal{U}} = \mathbf{S}[f]_{\mathcal{B}}$ for any element $f \in P_2$.
 - d) Verify the formula SB = AS (that is, $B = S^{-1}AS$) for the matrices B and A you found in parts a) and
 - e) Find the change of basis matrix **Q** from \mathcal{U} to \mathcal{B} , i.e. such that $[f]_{\mathcal{B}} = \mathbf{Q}[f]_{\mathcal{U}}$ for any element $f \in P_2$.

For additional practice:

Section 3.4:

59. Is the matrix $\begin{bmatrix} 2 & 0 \\ 0 & 3 \end{bmatrix}$ similar to the matrix $\begin{bmatrix} 2 & 1 \\ 0 & 3 \end{bmatrix}$?

69. If **A** is a 2×2 matrix such that $\mathbf{A} \begin{bmatrix} 1 \\ 2 \end{bmatrix} = \begin{bmatrix} 3 \\ 6 \end{bmatrix}$ and $\mathbf{A} \begin{bmatrix} 2 \\ 1 \end{bmatrix} = \begin{bmatrix} -2 \\ -1 \end{bmatrix}$, show that **A** is similar to a

diagonal matrix **D**. Find an invertible matrix **S** such that $S^{-1}AS = D$.

Section 4.1:

Which of the subsets of P_2 given in Exercises 1, 2, and 3 are subspaces of P_2 ? Find a basis for those that are subspaces. [P_2 is the linear space consisting of polynomials of degree less than or equal to 2.]

1.
$$\{p(t): p(0) = 2\}$$

2.
$$\{p(t): p(0) = 0\}$$

2.
$$\{p(t): p(0) = 0\}$$
 3. $\{p(t): p'(1) = p(2)\}$ (p' denotes the derivative.)

Which of the subsets of $\mathbf{R}^{3\times3}$ such given in Exercises 9, 10, and 11 are subspaces of $\mathbf{R}^{3\times3}$?

9. The 3×3 matrices whose entries are all greater than or equal to zero.

- 10. The 3×3 matrices **A** such that the vector $\begin{bmatrix} 1\\2\\3 \end{bmatrix}$ is in the kernel of **A**.
- 11. The 3×3 matrices in reduced row-echelon form.

Find a basis for each of the spaces in Exercises 25 and 29 and determine its dimension.

- 25. The space of all polynomials f(t) in P_2 such that f(1) = 0.
- 29. The space of all 2×2 matrices **A** such that $\mathbf{A} \begin{bmatrix} 1 & 1 \\ 1 & 1 \end{bmatrix} = \begin{bmatrix} 0 & 0 \\ 0 & 0 \end{bmatrix}$.

Section 4.2:

- 2. Is the transformation $T(\mathbf{M}) = 7\mathbf{M}$ from $\mathbf{R}^{2\times 2}$ to $\mathbf{R}^{2\times 2}$ linear? If so, determine whether it is an isomorphism.
- 4. Is the transformation $T(\mathbf{M}) = \det(\mathbf{M})$ from $\mathbf{R}^{2\times 2}$ to \mathbf{R} linear? If so, determine whether it is an isomorphism.
- 66. Find the kernel and nullity of the transformation T(f) = f f' from C^{∞} to C^{∞} . [C^{∞} denotes the linear space consisting of all infinitely differentiable functions of one variable.]
- 67. For which constants k is the linear transformation $T(\mathbf{M}) = \begin{bmatrix} 2 & 3 \\ 0 & 4 \end{bmatrix} \mathbf{M} \mathbf{M} \begin{bmatrix} 3 & 0 \\ 0 & k \end{bmatrix}$ an isomorphism from $\mathbf{R}^{2\times 2}$ to $\mathbf{R}^{2\times 2}$.
- 81. In this exercise, we will outline a proof of the Rank-Nullity Theorem: If *T* is a linear transformation from *V* to *W*, where *V* is finite-dimensional, then dim(*V*) = dim(im *T*) + dim(ker *T*) = rank(*T*) + nullity(*T*).

 a. Explain why ker(*T*) and image(*T*) are finite dimensional. *Hint*: Use Exercises 4.1.54 and 4.1.57.

 Now, consider a basis { $\mathbf{v}_1, \mathbf{v}_2, \dots, \mathbf{v}_n$ } of ker(*T*), where n = nullity(T), and a basis { $\mathbf{w}_1, \mathbf{v}_2, \dots, \mathbf{w}_r$ } of im(*T*), where r = rank(T). Consider vectors { $\mathbf{u}_1, \mathbf{u}_2, \dots, \mathbf{u}_r$ } in *V* such that $T(\mathbf{u}_i) = \mathbf{w}_i$ for $i = 1, \dots, r$. Our goal is to show that the r + n vectors $\mathbf{u}_1, \mathbf{u}_2, \dots, \mathbf{u}_r, \mathbf{v}_1, \mathbf{v}_2, \dots, \mathbf{v}_n$ form a basis of *V*. This will prove our claim.
 - b. Show that the vectors \mathbf{u}_1 , \mathbf{u}_2 ,..., \mathbf{v}_r , \mathbf{v}_1 , \mathbf{v}_2 ,..., \mathbf{v}_n are linearly independent. *Hint*: Consider a relation $c_1\mathbf{u}_1 + \cdots + c_r\mathbf{u}_r + d_1\mathbf{v}_1 + \cdots + d_n\mathbf{v}_n = \mathbf{0}$, apply linear transformation T to both sides, and take it from there.
 - c. Show that the vectors \mathbf{u}_1 , \mathbf{u}_2 ,..., \mathbf{v}_r , \mathbf{v}_1 , \mathbf{v}_2 ,..., \mathbf{v}_n span V. Hint: Consider an arbitrary vector \mathbf{v} in V, and write $T(\mathbf{v}) = d_1 \mathbf{w}_1 + \cdots d_r \mathbf{w}_r$. Now show that the vector $\mathbf{v} d_1 \mathbf{u}_1 + \cdots d_r \mathbf{u}_r$ is in the kernel of T, so that $\mathbf{v} d_1 \mathbf{u}_1 + \cdots + d_r \mathbf{u}_r$ can be written as a linear combination of \mathbf{v}_1 , \mathbf{v}_2 ,..., \mathbf{v}_n .

Section 4.3:

- 1. Are the polynomials $f(t) = 7 + 3t + t^2$, $g(t) = 9 + 9t + 4t^2$, and $h(t) = 3 + 2t + t^2$ linearly independent?
- 13. Find the matrix of the linear transformation $T(\mathbf{M}) = \begin{bmatrix} 1 & 1 \\ 2 & 2 \end{bmatrix} \mathbf{M}$ from $\mathbf{R}^{2\times 2}$ to $\mathbf{R}^{2\times 2}$ with respect to the basis $\mathbf{u} = \left\{ \begin{bmatrix} 1 & 0 \\ 0 & 0 \end{bmatrix}, \begin{bmatrix} 0 & 1 \\ 0 & 0 \end{bmatrix}, \begin{bmatrix} 0 & 0 \\ 1 & 0 \end{bmatrix}, \begin{bmatrix} 0 & 0 \\ 0 & 1 \end{bmatrix} \right\}$.
- 14. Find the matrix of the linear transformation $T(\mathbf{M}) = \begin{bmatrix} 1 & 1 \\ 2 & 2 \end{bmatrix} \mathbf{M}$ from $\mathbf{R}^{2\times 2}$ to $\mathbf{R}^{2\times 2}$ with respect to the basis $\mathbf{B} = \left\{ \begin{bmatrix} 1 & 0 \\ -1 & 0 \end{bmatrix}, \begin{bmatrix} 0 & 1 \\ 0 & -1 \end{bmatrix}, \begin{bmatrix} 1 & 0 \\ 2 & 0 \end{bmatrix}, \begin{bmatrix} 0 & 1 \\ 0 & 2 \end{bmatrix} \right\}$.
- 44. a. Find the change of basis matrix **S** from the basis \mathcal{B} considered in Exercise 14 to the standard basis \mathcal{U} of $\mathbb{R}^{2\times 2}$ considered in Exercise 13.
 - b. Verify the formula SB = AS (that is, $B = S^{-1}AS$) for the matrices **B** and **A** you found in Exercises 14 and 13, respectively.

TRUE or FALSE?

- 1. The space $\mathbb{R}^{2\times3}$ is 5-dimensional.
- If f₁,..., f_n is a basis of a linear space V, then any element of V can be written as a linear combination of f₁,..., f_n.
- The space P₁ is isomorphic to C.
- If the kernel of a linear transformation T from P₄ to P₄ is {0}, then T must be an isomorphism.
- If W₁ and W₂ are subspaces of a linear space V, then the intersection W₁ ∩ W₂ must be a subspace of V as well.
- If T is a linear transformation from P₆ to ℝ^{2×2}, then the kernel of T must be 3-dimensional.
- The polynomials of degree less than 7 form a 7dimensional subspace of the linear space of all polynomials.
- The function T(f) = 3f 4f' from C[∞] to C[∞] is a linear transformation.
- The lower triangular 2 x 2 matrices form a subspace of the space of all 2 x 2 matrices.
- The kernel of a linear transformation is a subspace of the domain.
- 11. The linear transformation T(f) = f + f'' from C^{∞} to C^{∞} is an isomorphism.
- All linear transformations from P₃ to R^{2×2} are isomorphisms.
- If T is a linear transformation from V to V, then the intersection of im(T) and ker(T) must be {0}.
- The space of all upper triangular 4×4 matrices is isomorphic to the space of all lower triangular 4 × 4 matrices.
- 15. Every polynomial of degree 3 can be expressed as a linear combination of the polynomial (t-3), $(t-3)^2$, and $(t-3)^3$.
- If a linear space V can be spanned by 10 elements, then the dimension of V must be ≤ 10.
- The function T(M) = det(M) from R^{2×2} to R is a linear transformation.
- There exists a 2 × 2 matrix A such that the space of all matrices commuting with A is 1-dimensional.
- All bases of P₃ contain at least one polynomial of degree ≤ 2.
- If T is an isomorphism, then T⁻¹ must be an isomorphism as well.
- If the image of a linear transformation T from P to P is all of P, then T must be an isomorphism.
- 22. If f_1 , f_2 , f_3 is a basis of a linear space V, then f_1 , $f_1 + f_2$, $f_1 + f_2 + f_3$ must be a basis of V as well.
- 23. If a, b, and c are distinct real numbers, then the polynomials (x-b)(x-c), (x-a)(x-c), and (x-a)(x-b) must be linearly independent.
- 24. The linear transformation T(f(t)) = f(4t 3) from P to P is an isomorphism.

- **25.** The linear transformation $T(M) = \begin{bmatrix} 1 & 2 \\ 3 & 6 \end{bmatrix} M$ from $\mathbb{R}^{2 \times 2}$ to $\mathbb{R}^{2 \times 2}$ has rank 1.
- **26.** If the matrix of a linear transformation T (with respect to some basis) is $\begin{bmatrix} 3 & 5 \\ 0 & 4 \end{bmatrix}$, then there must exist a nonzero element f in the domain of T such that T(f) = 3f.
- 27. The kernel of the linear transformation $T(f(t)) = f(t^2)$ from P to P is $\{0\}$.
- 28. If S is any invertible 2×2 matrix, then the linear transformation T(M) = SMS is an isomorphism from $\mathbb{R}^{2 \times 2}$ to $\mathbb{R}^{2 \times 2}$.
- There exists a 2 × 2 matrix A such that the space of all matrices commuting with A is 2-dimensional.
- There exists a basis of R^{2×2} that consists of four invertible matrices.
- If W is a subspace of V, and if W is finite dimensional, then V must be finite dimensional as well.
- 32. There exists a linear transformation from R^{3×3} to R^{2×2} whose kernel consists of all lower triangular 3 × 3 matrices, while the image consists of all upper triangular 2 × 2 matrices.
- Every two-dimensional subspace of R^{2×2} contains at least one invertible matrix.
- 34. If 𝔄 = (f, g) and 𝔻 = (f, f + g) are two bases of a linear space V, then the change of basis matrix from 𝔄 to 𝔻 is \$\begin{bmatrix} 1 & 1 \ 0 & 1 \end{bmatrix}\$.
- 35. If the matrix of a linear transformation T with respect to a basis (f, g) is $\begin{bmatrix} 1 & 2 \\ 3 & 4 \end{bmatrix}$, then the matrix of T with respect to the basis (g, f) is $\begin{bmatrix} 2 & 1 \\ 4 & 3 \end{bmatrix}$.
- 36. The linear transformation T(f) = f' from P_n to P_n has rank n, for all positive integers n.
- 37. If the matrix of a linear transformation T (with respect to some basis) is $\begin{bmatrix} 2 & 3 \\ 5 & 7 \end{bmatrix}$, then T must be an isomorphism.
- There exists a subspace of R^{3×4} that is isomorphic to Po.
- 39. There exist two distinct subspaces W₁ and W₂ of ℝ²×² whose union W₁ ∪ W₂ is a subspace of ℝ²×² as well.
- 40. There exists a linear transformation from P to P₅ whose image is all of P₅.
- **41.** If f_1, \ldots, f_n are polynomials such that the degree of f_k is k (for $k = 1, \ldots, n$), then f_1, \ldots, f_n must be linearly independent.
- The transformation D(f) = f' from C[∞] to C[∞] is an isomorphism.
- 43. If T is a linear transformation from P_4 to W with im(T) = W, then the inequality $dim(W) \le 5$ must hold

44. The kernel of the linear transformation

$$T\big(f(t)\big) = \int_0^1 f(t)\,dt$$

from P to \mathbb{R} is finite dimensional.

- 45. If T is a linear transformation from V to V, then {f in V : T(f) = f} must be a subspace of V.
- 46. If T is a linear transformation from P₆ to P₆ that transforms t^k into a polynomial of degree k (for k = 1,..., 6), then T must be an isomorphism.
- 47. There exist invertible 2 × 2 matrices P and Q such that the linear transformation T(M) = PM - MQ is an isomorphism.
- 48. There exists a linear transformation from P₆ to C whose kernel is isomorphic to R^{2×2}.
- **49.** If f_1 , f_2 , f_3 is a basis of a linear space V, and if f is any element of V, then the elements $f_1 + f$, $f_2 + f$, $f_3 + f$ must form a basis of V as well.
- There exists a two-dimensional subspace of R^{2×2} whose nonzero elements are all invertible.
- 51. The space P_{11} is isomorphic to $\mathbb{R}^{3\times4}$.
- 52. If T is a linear transformation from V to W, and if both im(T) and ker(T) are finite dimensional, then W must be finite dimensional.
- 53. If T is a linear transformation from V to $\mathbb{R}^{2\times 2}$ with $\ker(T) = \{0\}$, then the inequality $\dim(V) \leq 4$ must hold.
- 54. The function

$$T(f(t)) = \frac{d}{dt} \int_{2}^{3t+4} f(x) dx$$

from P_5 to P_5 is an isomorphism.

- 55. Any 4-dimensional linear space has infinitely many 3-dimensional subspaces.
- **56.** If the matrix of a linear transformation T (with respect to some basis) is $\begin{bmatrix} 3 & 5 \\ 0 & 4 \end{bmatrix}$, then there must exist a nonzero element f in the domain of T such that T(f) = 4f.
- 57. If the image of a linear transformation T is infinite dimensional, then the domain of T must be infinite dimensional.
- 58. There exists a 2 × 2 matrix A such that the space of all matrices commuting with A is 3-dimensional.
- If A, B, C, and D are noninvertible 2 × 2 matrices, then the matrices AB, AC, and AD must be linearly dependent.
- 60. There exist two distinct 3-dimensional subspaces W₁ and W₂ of P₄ such that the union W₁ ∪ W₂ is a subspace of P₄ as well.
- 61. If the elements f₁,..., f_n (where f₁ ≠ 0) are linearly dependent, then one element f_k can be expressed uniquely as a linear combination of the preceding elements f₁,..., f_{k-1}.

- 62. There exists a 3 × 3 matrix P such that the linear transformation T(M) = MP − PM from R^{3×3} to R^{3×3} is an isomorphism.
- 63. If f₁, f₂, f₃, f₄, f₅ are elements of a linear space V, and if there are exactly two redundant elements in the list f₁, f₂, f₃, f₄, f₅, then there must be exactly two redundant elements in the list f₂, f₄, f₅, f₁, f₃ as well.
- 64. There exists a linear transformation T from P₆ to P₆ such that the kernel of T is isomorphic to the image of T.
- 65. If T is a linear transformation from V to W, and if both im(T) and ker(T) are finite dimensional, then V must be finite dimensional.
- **66.** If the matrix of a linear transformation T (with respect to some basis) is $\begin{bmatrix} 3 & 5 \\ 0 & 4 \end{bmatrix}$, then there must exist a nonzero element f in the domain of T such that T(f) = 5f.
- Every three-dimensional subspace of R^{2×2} contains at least one invertible matrix.