Math E-21b - Spring 2024 - Homework \#5

Problem 1. (3.4/60) Is the matrix $\left[\begin{array}{cc}1 & 0 \\ 0 & -1\end{array}\right]$ similar to the matrix $\left[\begin{array}{ll}0 & 1 \\ 1 & 0\end{array}\right]$?
[Definition: Two matrices \mathbf{A} and \mathbf{B} are called similar if $\mathbf{B}=\mathbf{S}^{-1} \mathbf{A S}$ for some invertible matrix \mathbf{S}, i.e. they represent the same linear transformation relative to different bases.]
Problem 2. (3.4/62) Find a basis \mathscr{B} of \mathbf{R}^{2} such that the \mathfrak{B}-matrix of the linear transformation $T(\mathbf{x})=\left[\begin{array}{ll}1 & 2 \\ 4 & 3\end{array}\right] \mathbf{x}$ is $\mathbf{B}=\left[\begin{array}{cc}5 & 0 \\ 0 & -1\end{array}\right]$.

Problem 3. (3.4/70) Is there a basis \mathfrak{B} of \mathbf{R}^{2} such that the \mathscr{B}-matrix \mathbf{B} of the linear transformation $T(\mathbf{x})=\left[\begin{array}{cc}0 & -1 \\ 1 & 0\end{array}\right] \mathbf{x}$ is upper triangular? Hint: Think about the first column of \mathbf{B}.

Problem 4. (3.4/71) Suppose the matrix \mathbf{A} is similar to \mathbf{B}, with $\mathbf{B}=\mathbf{S}^{-1} \mathbf{A S}$.
a. Show that if \mathbf{x} is in $\operatorname{ker}(\mathbf{B})$, then $\mathbf{S x}$ is in $\operatorname{ker}(\mathbf{A})$.
b. Show that $\operatorname{nullity}(\mathbf{A})=\operatorname{nullity}(\mathbf{B})$. Hint: If $\left\{\mathbf{v}_{1}, \mathbf{v}_{2}, \cdots, \mathbf{v}_{p}\right\}$ is a basis for $\operatorname{ker}(\mathbf{B})$, then the vectors
$\left\{\mathbf{S v}_{1}, \mathbf{S} \mathbf{v}_{2}, \cdots, \mathbf{S} \mathbf{v}_{p}\right\}$ in $\operatorname{ker}(\mathbf{A})$ are linearly independent. Now reverse the roles of \mathbf{A} and \mathbf{B}.
c. (3.4/72) If \mathbf{A} is similar to \mathbf{B}, what is the relationship between $\operatorname{rank}(\mathbf{A})$ and $\operatorname{rank}(\mathbf{B})$? See exercise 71.

Problem 5. (3.4/73) Let L be the line in \mathbf{R}^{3} spanned by the vector $\mathbf{v}=\left[\begin{array}{c}0.6 \\ 0.8 \\ 0\end{array}\right]$. Let T from \mathbf{R}^{3} to \mathbf{R}^{3} be the rotation about this line through an angle of $\pi / 2$, in the direction indicated in the accompanying sketch.
Find the matrix \mathbf{A} such that $T(\mathbf{x})=\mathbf{A x}$.
Problem 6. (3.4/74) Consider the regular tetrahedron in the accompanying sketch whose center is at the origin. Let $\mathbf{v}_{0}, \mathbf{v}_{1}, \mathbf{v}_{2}, \mathbf{v}_{3}$ be the position vectors of the four vertices of the tetrahedron: $\mathbf{v}_{0}=\overrightarrow{O P_{0}}, \mathbf{v}_{1}=\overrightarrow{O P_{1}}, \mathbf{v}_{2}=\overrightarrow{O P_{2}}, \mathbf{v}_{3}=\overrightarrow{O P_{3}}$.
a. Find the sum $\mathbf{v}_{0}+\mathbf{v}_{1}+\mathbf{v}_{2}+\mathbf{v}_{3}$.
b. Find the coordinate vector of \mathbf{v}_{0} with respect to the basis $\left\{\mathbf{v}_{1}, \mathbf{v}_{2}, \mathbf{v}_{3}\right\}$.
c. Let T be the linear transformation with $T\left(\mathbf{v}_{0}\right)=\mathbf{v}_{3}, T\left(\mathbf{v}_{3}\right)=\mathbf{v}_{1}$, and $T\left(\mathbf{v}_{1}\right)=\mathbf{v}_{0}$. What is $T\left(\mathbf{v}_{2}\right)$? Describe the transformation T geometrically (as a reflection, rotation, projection, or
 whatever). Find the matrix \mathbf{B} of T with respect to the basis $\left\{\mathbf{v}_{1}, \mathbf{v}_{2}, \mathbf{v}_{3}\right\}$. What is \mathbf{B}^{3} ? Explain.

Find a basis for each of the spaces in Problems 7-9 and determine its dimension.
Problem 7. (4.1/20) The space of all matrices $\mathbf{A}=\left[\begin{array}{ll}a & b \\ c & d\end{array}\right]$ in $\mathbf{R}^{2 \times 2}$ such that $a+d=0$.
Problem 8. (4.1/26) The space of all polynomials $f(t)$ in P_{3} such that $f(1)=0$ and $\int_{-1}^{1} f(t) d t=0$.
Problem 9. (4.1/30) The space of all 2×2 matrices \mathbf{A} such that $\left[\begin{array}{ll}1 & 2 \\ 3 & 6\end{array}\right] \mathbf{A}=\left[\begin{array}{ll}0 & 0 \\ 0 & 0\end{array}\right]$.
Problem 10. a) (4.2/6) Is the transformation $T(\mathbf{M})=\mathbf{M}\left[\begin{array}{ll}1 & 2 \\ 3 & 6\end{array}\right]$ from $\mathbf{R}^{2 \times 2}$ to $\mathbf{R}^{2 \times 2}$ linear?
If it is, determine whether it is an isomorphism.
b) $(4.2 / 52)$ Find the rank and nullity, and bases for the image and kernel of this transformation.

Problem 11. a) (4.2/25) Is the transformation $[T(f)](t)=f^{\prime \prime}(t)+4 f^{\prime}(t)$ from P_{2} to P_{2} linear?
If it is, determine whether it is an isomorphism.
b) $(4.2 / 53)$ Find the image, rank, kernel and nullity of this transformation.
c) (4.3/22) Find the matrix of the linear transformation $T(f)=f^{\prime \prime}+4 f^{\prime}$ from P_{2} to P_{2} relative to the basis $\boldsymbol{U}=\left\{1, t, t^{2}\right\}$.

Problem 12. a) (4.3/27) Find the matrix \mathbf{A} of the linear transformation $[T(f)](t)=f(2 t-1)$ from P_{2} to P_{2} relative to the basis $\boldsymbol{U}=\left\{1, t, t^{2}\right\}$.
b) (4.3/28) Find the matrix \mathbf{B} of the linear transformation $[T(f)](t)=f(2 t-1)$ from P_{2} to P_{2} relative to the basis $\mathscr{B}=\left\{1, t-1,(t-1)^{2}\right\}$.
c) (4.3/47) Find the change of basis matrix \mathbf{S} from the basis $\boldsymbol{B}=\left\{1, t-1,(t-1)^{2}\right\}$ to the "standard" basis $\boldsymbol{U}=\left\{1, t, t^{2}\right\}$ of P_{2}. That is, find \mathbf{S} such that $[f]_{\boldsymbol{u}}=\mathbf{S}[f]_{\mathcal{B}}$ for any element $f \in P_{2}$.
d) Verify the formula $\mathbf{S B}=\mathbf{A S}$ (that is, $\mathbf{B}=\mathbf{S}^{-1} \mathbf{A S}$) for the matrices \mathbf{B} and \mathbf{A} you found in parts a) and b).
e) Find the change of basis matrix \mathbf{Q} from \boldsymbol{U} to \mathfrak{B}, i.e. such that $[f]_{\mathscr{B}}=\mathbf{Q}[f]_{\mathcal{U}}$ for any element $f \in P_{2}$.

For additional practice:

Section 3.4:

59. Is the matrix $\left[\begin{array}{ll}2 & 0 \\ 0 & 3\end{array}\right]$ similar to the matrix $\left[\begin{array}{ll}2 & 1 \\ 0 & 3\end{array}\right]$?
60. If \mathbf{A} is a 2×2 matrix such that $\mathbf{A}\left[\begin{array}{l}1 \\ 2\end{array}\right]=\left[\begin{array}{l}3 \\ 6\end{array}\right]$ and $\mathbf{A}\left[\begin{array}{l}2 \\ 1\end{array}\right]=\left[\begin{array}{l}-2 \\ -1\end{array}\right]$, show that \mathbf{A} is similar to a diagonal matrix \mathbf{D}. Find an invertible matrix \mathbf{S} such that $\mathbf{S}^{-1} \mathbf{A S}=\mathbf{D}$.

Section 4.1:

Which of the subsets of P_{2} given in Exercises 1, 2, and 3 are subspaces of P_{2} ? Find a basis for those that are subspaces. [P_{2} is the linear space consisting of polynomials of degree less than or equal to 2.]

1. $\{p(t): p(0)=2\}$
2. $\{p(t): p(0)=0\}$
3. $\left\{p(t): p^{\prime}(1)=p(2)\right\}$ (p^{\prime} denotes the derivative.)

Which of the subsets of $\mathbf{R}^{3 \times 3}$ such given in Exercises 9, 10, and 11 are subspaces of $\mathbf{R}^{3 \times 3}$?
9. The 3×3 matrices whose entries are all greater than or equal to zero.
10. The 3×3 matrices \mathbf{A} such that the vector $\left[\begin{array}{l}1 \\ 2 \\ 3\end{array}\right]$ is in the kernel of \mathbf{A}.
11. The 3×3 matrices in reduced row-echelon form.

Find a basis for each of the spaces in Exercises 25 and 29 and determine its dimension.
25. The space of all polynomials $f(t)$ in P_{2} such that $f(1)=0$.
29. The space of all 2×2 matrices \mathbf{A} such that $\mathbf{A}\left[\begin{array}{ll}1 & 1 \\ 1 & 1\end{array}\right]=\left[\begin{array}{ll}0 & 0 \\ 0 & 0\end{array}\right]$.

Section 4.2:

2. Is the transformation $T(\mathbf{M})=7 \mathbf{M}$ from $\mathbf{R}^{2 \times 2}$ to $\mathbf{R}^{2 \times 2}$ linear? If so, determine whether it is an isomorphism.
3. Is the transformation $T(\mathbf{M})=\operatorname{det}(\mathbf{M})$ from $\mathbf{R}^{2 \times 2}$ to \mathbf{R} linear? If so, determine whether it is an isomorphism.
4. Find the kernel and nullity of the transformation $T(f)=f-f^{\prime}$ from C^{∞} to C^{∞}.
[C^{∞} denotes the linear space consisting of all infinitely differentiable functions of one variable.]
5. For which constants k is the linear transformation $T(\mathbf{M})=\left[\begin{array}{ll}2 & 3 \\ 0 & 4\end{array}\right] \mathbf{M}-\mathbf{M}\left[\begin{array}{ll}3 & 0 \\ 0 & k\end{array}\right]$ an isomorphism from $\mathbf{R}^{2 \times 2}$ to $\mathbf{R}^{2 \times 2}$.
6. In this exercise, we will outline a proof of the Rank-Nullity Theorem: If T is a linear transformation from V to W, where V is finite-dimensional, then $\operatorname{dim}(V)=\operatorname{dim}(\operatorname{im} T)+\operatorname{dim}(\operatorname{ker} T)=\operatorname{rank}(T)+\operatorname{nullity}(T)$.
a. Explain why $\operatorname{ker}(T)$ and image (T) are finite dimensional. Hint: Use Exercises 4.1.54 and 4.1.57.

Now, consider a basis $\left\{\mathbf{v}_{1}, \mathbf{v}_{2}, \cdots, \mathbf{v}_{n}\right\}$ of $\operatorname{ker}(T)$, where $n=\operatorname{nullity}(T)$, and a basis $\left\{\mathbf{w}_{1}, \mathbf{v}_{2}, \ldots, \mathbf{w}_{r}\right\}$ of $\operatorname{im}(T)$, where $r=\operatorname{rank}(T)$. Consider vectors $\left\{\mathbf{u}_{1}, \mathbf{u}_{2}, \ldots, \mathbf{u}_{r}\right\}$ in V such that $T\left(\mathbf{u}_{i}\right)=\mathbf{w}_{i}$ for $i=1, \ldots, r$. Our goal is to show that the $r+n$ vectors $\mathbf{u}_{1}, \mathbf{u}_{2}, \ldots, \mathbf{u}_{r}, \mathbf{v}_{1}, \mathbf{v}_{2}, \ldots, \mathbf{v}_{n}$ form a basis of V. This will prove our claim.
b. Show that the vectors $\mathbf{u}_{1}, \mathbf{u}_{2}, \ldots, \mathbf{u}_{r}, \mathbf{v}_{1}, \mathbf{v}_{2}, \ldots, \mathbf{v}_{n}$ are linearly independent. Hint: Consider a relation $c_{1} \mathbf{u}_{1}+\cdots c_{r} \mathbf{u}_{r}+d_{1} \mathbf{v}_{1}+\cdots d_{n} \mathbf{v}_{n}=\mathbf{0}$, apply linear transformation T to both sides, and take it from there.
c. Show that the vectors $\mathbf{u}_{1}, \mathbf{u}_{2}, \ldots, \mathbf{u}_{r}, \mathbf{v}_{1}, \mathbf{v}_{2}, \ldots, \mathbf{v}_{n}$ span V. Hint: Consider an arbitrary vector \mathbf{v} in V, and write $T(\mathbf{v})=d_{1} \mathbf{w}_{1}+\cdots d_{r} \mathbf{w}_{r}$. Now show that the vector $\mathbf{v}-d_{1} \mathbf{u}_{1}+\cdots d_{r} \mathbf{u}_{r}$ is in the kernel of T, so that $\mathbf{v}-d_{1} \mathbf{u}_{1}+\cdots d_{r} \mathbf{u}_{r}$ can be written as a linear combination of $\mathbf{v}_{1}, \mathbf{v}_{2}, \ldots, \mathbf{v}_{n}$.

Section 4.3:

1. Are the polynomials $f(t)=7+3 t+t^{2}, g(t)=9+9 t+4 t^{2}$, and $h(t)=3+2 t+t^{2}$ linearly independent?
2. Find the matrix of the linear transformation $T(\mathbf{M})=\left[\begin{array}{ll}1 & 1 \\ 2 & 2\end{array}\right] \mathbf{M}$ from $\mathbf{R}^{2 \times 2}$ to $\mathbf{R}^{2 \times 2}$ with respect to the basis $\boldsymbol{u}=\left\{\left[\begin{array}{ll}1 & 0 \\ 0 & 0\end{array}\right],\left[\begin{array}{ll}0 & 1 \\ 0 & 0\end{array}\right],\left[\begin{array}{ll}0 & 0 \\ 1 & 0\end{array}\right],\left[\begin{array}{ll}0 & 0 \\ 0 & 1\end{array}\right]\right\}$.
3. Find the matrix of the linear transformation $T(\mathbf{M})=\left[\begin{array}{ll}1 & 1 \\ 2 & 2\end{array}\right] \mathbf{M}$ from $\mathbf{R}^{2 \times 2}$ to $\mathbf{R}^{2 \times 2}$ with respect to the basis $\boldsymbol{B}=\left\{\left[\begin{array}{cc}1 & 0 \\ -1 & 0\end{array}\right],\left[\begin{array}{cc}0 & 1 \\ 0 & -1\end{array}\right],\left[\begin{array}{ll}1 & 0 \\ 2 & 0\end{array}\right],\left[\begin{array}{ll}0 & 1 \\ 0 & 2\end{array}\right]\right\}$.
4. a. Find the change of basis matrix \mathbf{S} from the basis \boldsymbol{B} considered in Exercise 14 to the standard basis \boldsymbol{U} of $\mathbf{R}^{2 \times 2}$ considered in Exercise 13.
b. Verify the formula $\mathbf{S B}=\mathbf{A S}$ (that is, $\mathbf{B}=\mathbf{S}^{-1} \mathbf{A S}$) for the matrices \mathbf{B} and \mathbf{A} you found in Exercises 14 and 13, respectively.

TRUE or FALSE?

1. The space $\mathbb{R}^{2 \times 3}$ is 5 -dimensional.
2. If f_{1}, \ldots, f_{n} is a basis of a linear space V, then any element of V can be written as a linear combination of f_{1}, \ldots, f_{n}.
3. The space P_{1} is isomorphic to \mathbb{C}.
4. If the kernel of a linear transformation T from P_{4} to P_{4} is $\{0\}$, then T must be an isomorphism.
5. If W_{1} and W_{2} are subspaces of a linear space V, then the intersection $W_{1} \cap W_{2}$ must be a subspace of V as well.
6. If T is a linear transformation from P_{6} to $\mathbb{R}^{2 \times 2}$, then the kernel of T must be 3-dimensional.
7. The polynomials of degree less than 7 form a 7 dimensional subspace of the linear space of all polynomials.
8. The function $T(f)=3 f-4 f^{\prime}$ from C^{∞} to C^{∞} is a linear transformation.
9. The lower triangular 2×2 matrices form a subspace of the space of all 2×2 matrices.
10. The kernel of a linear transformation is a subspace of the domain.
11. The linear transformation $T(f)=f+f^{\prime \prime}$ from C^{∞} to C^{∞} is an isomorphism.
12. All linear transformations from P_{3} to $\mathbb{R}^{2 \times 2}$ are isomorphisms.
13. If T is a linear transformation from V to V, then the intersection of $\operatorname{im}(T)$ and $\operatorname{ker}(T)$ must be $\{0\}$.
14. The space of all upper triangular 4×4 matrices is isomorphic to the space of all lower triangular 4×4 matrices.
15. Every polynomial of degree 3 can be expressed as a linear combination of the polynomial $(t-3),(t-3)^{2}$, and $(t-3)^{3}$.
16. If a linear space V can be spanned by 10 elements, then the dimension of V must be ≤ 10.
17. The function $T(M)=\operatorname{det}(M)$ from $\mathbb{R}^{2 \times 2}$ to \mathbb{R} is a linear transformation.
18. There exists a 2×2 matrix A such that the space of all matrices commuting with A is 1 -dimensional.
19. All bases of P_{3} contain at least one polynomial of degree ≤ 2.
20. If T is an isomorphism, then T^{-1} must be an isomorphism as well.
21. If the image of a linear transformation T from P to P is all of P, then T must be an isomorphism.
22. If f_{1}, f_{2}, f_{3} is a basis of a linear space V, then f_{1}, $f_{1}+f_{2}, f_{1}+f_{2}+f_{3}$ must be a basis of V as well.
23. If a, b, and c are distinct real numbers, then the polynomials $(x-b)(x-c),(x-a)(x-c)$, and $(x-a)(x-b)$ must be linearly independent.
24. The linear transformation $T(f(t))=f(4 t-3)$ from P to P is an isomorphism.
25. The linear transformation $T(M)=\left[\begin{array}{ll}1 & 2 \\ 3 & 6\end{array}\right] M$ from $\mathbb{R}^{2 \times 2}$ to $\mathbb{R}^{2 \times 2}$ has rank 1 .
26. If the matrix of a linear transformation T (with respect to some basis) is $\left[\begin{array}{ll}3 & 5 \\ 0 & 4\end{array}\right]$, then there must exist a nonzero element f in the domain of T such that $T(f)=3 f$.
27. The kernel of the linear transformation $T(f(t))=$ $f\left(t^{2}\right)$ from P to P is $\{0\}$.
28. If S is any invertible 2×2 matrix, then the linear transformation $T(M)=S M S$ is an isomorphism from $\mathrm{R}^{2 \times 2}$ to $\mathbb{R}^{2 \times 2}$.
29. There exists a 2×2 matrix A such that the space of all matrices commuting with A is 2-dimensional.
30. There exists a basis of $\mathbb{R}^{2 \times 2}$ that consists of four invertible matrices.
31. If W is a subspace of V, and if W is finite dimensional, then V must be finite dimensional as well.
32. There exists a linear transformation from $\mathbb{R}^{3 \times 3}$ to $\mathbb{R}^{2 \times 2}$ whose kernel consists of all lower triangular 3×3 matrices, while the image consists of all upper triangular 2×2 matrices.
33. Every two-dimensional subspace of $\mathbb{R}^{2 \times 2}$ contains at least one invertible matrix.
34. If $\mathfrak{Q}=(f, g)$ and $\mathfrak{B}=(f, f+g)$ are two bases of a linear space V, then the change of basis matrix from \mathfrak{A} to \mathfrak{B} is $\left[\begin{array}{ll}1 & 1 \\ 0 & 1\end{array}\right]$.
35. If the matrix of a linear transformation T with respect to a basis (f, g) is $\left[\begin{array}{ll}1 & 2 \\ 3 & 4\end{array}\right]$, then the matrix of T with respect to the basis (g, f) is $\left[\begin{array}{ll}2 & 1 \\ 4 & 3\end{array}\right]$.
36. The linear transformation $T(f)=f^{\prime}$ from P_{n} to P_{n} has rank n, for all positive integers n.
37. If the matrix of a linear transformation T (with respect to some basis) is $\left[\begin{array}{ll}2 & 3 \\ 5 & 7\end{array}\right]$, then T must be an isomorphism.
38. There exists a subspace of $\mathbb{R}^{3 \times 4}$ that is isomorphic to P_{9}.
39. There exist two distinct subspaces W_{1} and W_{2} of $\mathbb{R}^{2 \times 2}$ whose union $W_{1} \cup W_{2}$ is a subspace of $R^{2 \times 2}$ as well.
40. There exists a linear transformation from P to P_{5} whose image is all of P_{5}.
41. If f_{1}, \ldots, f_{n} are polynomials such that the degree of f_{k} is k (for $k=1, \ldots, n$), then f_{1}, \ldots, f_{n} must be linearly independent.
42. The transformation $D(f)=f^{\prime}$ from C^{∞} to C^{∞} is an isomorphism.
43. If T is a linear transformation from P_{4} to W with $\operatorname{im}(T)=W$, then the inequality $\operatorname{dim}(W) \leq 5$ must hold.
44. The kernel of the linear transformation

$$
T(f(t))=\int_{0}^{1} f(t) d t
$$

from P to \mathbb{R} is finite dimensional.
45. If T is a linear transformation from V to V, then $\{f$ in $V: T(f)=f\}$ must be a subspace of V.
46. If T is a linear transformation from P_{6} to P_{6} that transforms t^{k} into a polynomial of degree k (for $k=$ $1, \ldots, 6$), then T must be an isomorphism.
47. There exist invertible 2×2 matrices P and Q such that the linear transformation $T(M)=P M-M Q$ is an isomorphism.
48. There exists a linear transformation from P_{6} to C whose kernel is isomorphic to $\mathbb{R}^{2 \times 2}$.
49. If f_{1}, f_{2}, f_{3} is a basis of a linear space V, and if f is any element of V, then the elements $f_{1}+f, f_{2}+f$, $f_{3}+f$ must form a basis of V as well.
50. There exists a two-dimensional subspace of $\mathbb{R}^{2 \times 2}$ whose nonzero elements are all invertible.
51. The space P_{11} is isomorphic to $\mathbb{R}^{3 \times 4}$.
52. If T is a linear transformation from V to W, and if both $\operatorname{im}(T)$ and $\operatorname{ker}(T)$ are finite dimensional, then W must be finite dimensional.
53. If T is a linear transformation from V to $\mathbb{R}^{2 \times 2}$ with $\operatorname{ker}(T)=\{0\}$, then the inequality $\operatorname{dim}(V) \leq 4$ must hold.
54. The function

$$
T(f(t))=\frac{d}{d t} \int_{2}^{3 t+4} f(x) d x
$$

from P_{5} to P_{5} is an isomorphism.
55. Any 4-dimensional linear space has infinitely many 3-dimensional subspaces.
56. If the matrix of a linear transformation T (with respect to some basis) is $\left[\begin{array}{ll}3 & 5 \\ 0 & 4\end{array}\right]$, then there must exist a nonzero element f in the domain of T such that $T(f)=4 f$.
57. If the image of a linear transformation T is infinite dimensional, then the domain of T must be infinite dimensional.
58. There exists a 2×2 matrix A such that the space of all matrices commuting with A is 3 -dimensional.
59. If A, B, C, and D are noninvertible 2×2 matrices, then the matrices $A B, A C$, and $A D$ must be linearly dependent.
60. There exist two distinct 3-dimensional subspaces W_{1} and W_{2} of P_{4} such that the union $W_{1} \cup W_{2}$ is a subspace of P_{4} as well.
61. If the elements f_{1}, \ldots, f_{n} (where $f_{1} \neq 0$) are linearly dependent, then one element f_{k} can be expressed uniquely as a linear combination of the preceding elements f_{1}, \ldots, f_{k-1}.
62. There exists a 3×3 matrix P such that the linear transformation $T(M)=M P-P M$ from $\mathbb{R}^{3 \times 3}$ to $\mathbb{R}^{3 \times 3}$ is an isomorphism.
63. If $f_{1}, f_{2}, f_{3}, f_{4}, f_{5}$ are elements of a linear space V, and if there are exactly two redundant elements in the list $f_{1}, f_{2}, f_{3}, f_{4}, f_{5}$, then there must be exactly two redundant elements in the list $f_{2}, f_{4}, f_{5}, f_{1}, f_{3}$ as well.
64. There exists a linear transformation T from P_{6} to P_{6} such that the kernel of T is isomorphic to the image of T.
65. If T is a linear transformation from V to W, and if both $\operatorname{im}(T)$ and $\operatorname{ker}(T)$ are finite dimensional, then V must be finite dimensional.
66. If the matrix of a linear transformation T (with respect to some basis) is $\left[\begin{array}{ll}3 & 5 \\ 0 & 4\end{array}\right]$, then there must exist a nonzero element f in the domain of T such that $T(f)=5 f$.
67. Every three-dimensional subspace of $\mathbb{R}^{2 \times 2}$ contains at least one invertible matrix.

