Section 3.2:

Problem 1. (3.2/18) Use paper and pencil to identify the redundant vectors in $\begin{bmatrix} 1 \\ 1 \\ 1 \\ 1 \end{bmatrix}, \begin{bmatrix} 1 \\ 2 \\ 3 \\ 4 \end{bmatrix}, \begin{bmatrix} 1 \\ 4 \\ 7 \\ 10 \end{bmatrix}$.

Thus determine whether the given vectors are linearly independent.

Problem 2. (3.2/28). Find a <u>basis</u> for the image of the matrix $\mathbf{A} = \begin{bmatrix} 1 & 1 & 1 \\ 1 & 2 & 5 \\ 1 & 3 & 7 \end{bmatrix}$.

Problem 3. (3.2/36) Consider a linear transformation *T* from \mathbf{R}^n to \mathbf{R}^p and some linearly <u>dependent</u> vectors $\mathbf{v}_1, \mathbf{v}_2, \dots, \mathbf{v}_m$ in \mathbf{R}^n . Are the vectors $T(\mathbf{v}_1), T(\mathbf{v}_2), \dots, T(\mathbf{v}_m)$ necessarily linearly dependent? How can you tell?

- **Problem 4.** (3.2/40) Consider an $n \times p$ matrix **A** and a $p \times m$ matrix **B**. We are told that the columns of **A** and the columns of **B** are linearly independent (respectively). Are the columns of the product **AB** linearly independent as well? *Hint*: Exercise 3.1.51 is useful. [This exercise reads: "Consider an $n \times p$ matrix **A** and a $p \times m$ matrix **B** such that ker(**A**) = {**0**} and ker(**B**) = {**0**}. Find ker(**AB**)."]
- **Problem 5.** (3.2/48) Express the plane V in \mathbb{R}^3 with equation $3x_1 + 4x_2 + 5x_3 = 0$ as the kernel of a matrix \mathbb{A} and as the image of a matrix \mathbb{B} . [*Note*: This exercise doesn't specify the sizes of the matrices \mathbb{A} and \mathbb{B} . There are many possible solutions, including the case where both \mathbb{A} and \mathbb{B} are 3×3 matrices. Think geometrically!]

Section 3.3:

Problem 6. (3.3/24) Find the reduced row-echelon form of the matrix $\mathbf{A} = \begin{bmatrix} 4 & 8 & 1 & 1 & 6 \\ 3 & 6 & 1 & 2 & 5 \\ 2 & 4 & 1 & 9 & 10 \\ 1 & 2 & 3 & 2 & 0 \end{bmatrix}$.

Then find a basis of the image of A and a basis of the kernel of A.

Problem 7. (3.3/30) Find a basis of the subspace of \mathbf{R}^4 defined by the equation $2x_1 - x_2 + 2x_3 + 4x_4 = 0$.

Problem 8. (3.3/32) Find a basis of the subspace of \mathbf{R}^4 that consists of all vectors perpendicular

to both
$$\begin{bmatrix} 1\\0\\-1\\1 \end{bmatrix}$$
 and $\begin{bmatrix} 0\\1\\2\\3 \end{bmatrix}$.

Problem 9. (3.3/36) Can you find a 3×3 matrix **A** such that $im(\mathbf{A}) = ker(\mathbf{A})$? Explain.

Section 3.4:

In Problems 10 and 11, determine whether the vector \mathbf{x} is in the span *V* of the vectors $\mathbf{v}_1, \mathbf{v}_2, \dots, \mathbf{v}_m$ (proceed "by inspection" if possible, and use the reduced row-echelon form if necessary). If \mathbf{x} is in *V*, find the coordinates of \mathbf{x} with respect to the basis $\mathcal{B} = {\mathbf{v}_1, \mathbf{v}_2, \dots, \mathbf{v}_m}$ of *V*, and write the coordinate vector $[\mathbf{x}]_{\mathcal{B}}$.

Problem 10. (3.4/6)
$$\mathbf{x} = \begin{bmatrix} -4 \\ 4 \end{bmatrix}; \ \mathbf{v}_1 = \begin{bmatrix} 1 \\ 2 \end{bmatrix}, \ \mathbf{v}_2 = \begin{bmatrix} 5 \\ 6 \end{bmatrix}$$
 Problem 11. (3.4/8) $\mathbf{x} = \begin{bmatrix} 2 \\ 3 \\ 4 \end{bmatrix}; \ \mathbf{v}_1 = \begin{bmatrix} 1 \\ 1 \\ 0 \end{bmatrix}, \ \mathbf{v}_2 = \begin{bmatrix} 2 \\ 0 \\ 1 \end{bmatrix}$

In Problems 12 and 13, find the matrix **B** of the linear transformation $T(\mathbf{x}) = \mathbf{A}\mathbf{x}$ with respect to the basis $\mathcal{B} = {\mathbf{v}_1, \mathbf{v}_2, ..., \mathbf{v}_m}$.

Problem 12. (3.4/26)
$$\mathbf{A} = \begin{bmatrix} 0 & 1 \\ 2 & 3 \end{bmatrix}; \mathbf{v}_1 = \begin{bmatrix} 1 \\ 2 \end{bmatrix}, \mathbf{v}_2 = \begin{bmatrix} 1 \\ 1 \end{bmatrix}$$

Problem 13. (3.4/28) $\mathbf{A} = \begin{bmatrix} 5 & -4 & -2 \\ -4 & 5 & -2 \\ -2 & -2 & 8 \end{bmatrix}; \mathbf{v}_1 = \begin{bmatrix} 2 \\ 2 \\ 1 \end{bmatrix}; \mathbf{v}_2 = \begin{bmatrix} 1 \\ -1 \\ 0 \end{bmatrix}; \mathbf{v}_3 = \begin{bmatrix} 0 \\ 1 \\ -2 \end{bmatrix}$

Problem 14. (3.4/42) Find a basis \mathcal{B} of \mathbb{R}^3 such that the \mathcal{B} -matrix \mathbb{B} of the linear transformation given by reflection *T* about the plane $x_1 - 2x_2 + 2x_3 = 0$ in \mathbb{R}^3 is diagonal. [Think geometrically!]

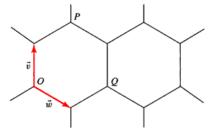
Problem 15. (3.4/44) Consider the plane $2x_1 - 3x_2 + 4x_3 = 0$ with basis **B**

consisting of vectors
$$\begin{bmatrix} 8\\4\\-1 \end{bmatrix}$$
 and $\begin{bmatrix} 5\\2\\-1 \end{bmatrix}$. If $\mathbf{x}_{\mathcal{B}} = \begin{bmatrix} 2\\-1 \end{bmatrix}$, find \mathbf{x} .

Problem 16. (3.4/46) Consider the plane with equation $x_1 + 2x_2 + x_3 = 0$.

Find a basis \mathscr{B} of this plane such that $\mathbf{x}_{\mathscr{B}} = \begin{bmatrix} 2 \\ -1 \end{bmatrix}$ for $\mathbf{x} = \begin{bmatrix} 1 \\ -1 \\ 1 \end{bmatrix}$.

Problem 17. (3.4/50) Given a regular hexagonal tiling of the plane, such as you might find on a kitchen floor, consider the basis \mathcal{B} of \mathbb{R}^2 consisting of the vectors \vec{v} , \vec{w} (of the same length) in the following sketch:



a. Find the coordinate vectors $\left[\overrightarrow{OP}\right]_{\mathcal{B}}$ and $\left[\overrightarrow{OQ}\right]_{\mathcal{B}}$.

Hint: Sketch the coordinate grid defined by the basis $\mathcal{B} = \{\vec{v}, \vec{w}\}$.

- b. We are told that $\begin{bmatrix} \overrightarrow{OR} \end{bmatrix}_{\mathcal{B}} = \begin{bmatrix} 3 \\ 2 \end{bmatrix}$. Sketch the point *R*. Is *R* the vertex or the center of a tile?
- c. We are told that $\begin{bmatrix} \overrightarrow{OS} \end{bmatrix}_{\mathscr{B}} = \begin{bmatrix} 17 \\ 13 \end{bmatrix}$. Is *S* the center or the vertex of a tile?

Problem 18. (3.4/56) Find a basis \mathcal{B} of \mathbb{R}^2 such that for the vectors $\mathbf{x} = \begin{bmatrix} 1 \\ 2 \end{bmatrix}$ and $\mathbf{y} = \begin{bmatrix} 3 \\ 4 \end{bmatrix}$ we have

 $\begin{bmatrix} \mathbf{x} \end{bmatrix}_{\mathscr{B}} = \begin{bmatrix} 3 \\ 5 \end{bmatrix}$ and $\begin{bmatrix} \mathbf{y} \end{bmatrix}_{\mathscr{B}} = \begin{bmatrix} 2 \\ 3 \end{bmatrix}$. [Read this problem <u>very</u> carefully. Many students get this one backwards!]

Problem 19. (3.4/58) Consider a 3×3 matrix **A** and a vector **v** in **R**³ such that $\mathbf{A}^3 \mathbf{v} = \mathbf{0}$, but $\mathbf{A}^2 \mathbf{v} \neq \mathbf{0}$.

a. Show that the vectors $\{\mathbf{A}^2\mathbf{v}, \mathbf{A}\mathbf{v}, \mathbf{v}\}$ form a basis of \mathbf{R}^3 . *Hint*: It suffices to show linear independence.

Consider a relation $c_1 \mathbf{A}^2 \mathbf{v} + c_2 \mathbf{A} \mathbf{v} + c_3 \mathbf{v} = \mathbf{0}$ and multiply by \mathbf{A}^2 to show that $c_3 = 0$.

b. Find the matrix of the transformation $T(\mathbf{x}) = \mathbf{A}\mathbf{x}$ with respect the basis $\{\mathbf{A}^2\mathbf{v}, \mathbf{A}\mathbf{v}, \mathbf{v}\}$.

For additional practice (not to be turned in):

Section 3.2:

Which of the sets *W* in Exercises 1 through 3 are subspaces of \mathbb{R}^3 ?

1.
$$W = \left\{ \begin{bmatrix} x \\ y \\ z \end{bmatrix} : x + y + z = 1 \right\}$$
2.
$$W = \left\{ \begin{bmatrix} x \\ y \\ z \end{bmatrix} : x \le y \le z \right\}$$
3.
$$W = \left\{ \begin{bmatrix} x + 2y + 3z \\ 4x + 5y + 6z \\ 7x + 8y + 9z \end{bmatrix} : x, y, z \text{ arbitrary constants} \right\}$$

6. Consider two subspaces V and W of \mathbf{R}^{n} .

- a. Is the intersection $V \cap W$ necessarily a subspace of \mathbb{R}^n ?
- b. Is the union $V \cup W$ necessarily a subspace of \mathbf{R}^{n} ?

In Exercises 17 and 19, use paper and pencil to identify the redundant vectors. Thus determine whether the given vectors are linearly independent.

24. Find a redundant column vector of the matrix $\mathbf{A} = \begin{bmatrix} 1 & 3 & 6 \\ 1 & 2 & 5 \\ 1 & 1 & 4 \end{bmatrix}$, and write it as a linear combination of

preceding columns. Use this representation to write a nontrivial relation among the columns, and thus find a nonzero vector in the kernel of A.

- 37. Consider a linear transformation *T* from \mathbf{R}^n to \mathbf{R}^p and some linearly independent vectors $\mathbf{v}_1, \mathbf{v}_2, ..., \mathbf{v}_m$ in \mathbf{R}^n . Are the vectors $T(\mathbf{v}_1), T(\mathbf{v}_2), ..., T(\mathbf{v}_m)$ necessarily linearly independent? How can you tell?
- 41. Consider an $m \times n$ matrix **A** and a $n \times m$ matrix **B** (with $n \neq m$) such that $AB = I_m$. (We say that **A** is a *left inverse* of **B**.) Are the columns of **B** linearly independent? What about the columns of **A**?
- 49. Express the line *L* in \mathbb{R}^3 spanned by the vector $\begin{bmatrix} 1\\1\\1 \end{bmatrix}$ as the image of a matrix **A** and as the kernel of a

matrix **B**. [*Note*: This exercise doesn't specify the sizes of the matrices **A** and **B**. There are many possible solutions, including the case where both **A** and **B** are 3×3 matrices. Think geometrically!]

Section 3.3:

23. Find the reduced row-echelon form of the matrix $\mathbf{A} = \begin{bmatrix} 1 & 0 & 2 & 4 \\ 0 & 1 & -3 & -1 \\ 3 & 4 & -6 & 8 \\ 0 & -1 & 3 & 1 \end{bmatrix}$.

Then find a basis of the image of A and a basis of the kernel of A.

27. Determine whether the vectors
$$\begin{cases} \begin{bmatrix} 1\\1\\1\\1 \end{bmatrix}, \begin{bmatrix} 1\\-1\\1\\-1 \end{bmatrix}, \begin{bmatrix} 1\\2\\4\\8 \end{bmatrix}, \begin{bmatrix} 1\\-2\\4\\-8 \end{bmatrix} \end{cases} \text{ form a basis of } \mathbf{R}^4.$$

29. Find a basis of the subspace of \mathbf{R}^3 defined by the equation $2x_1 + 3x_2 + x_3 = 0$.

- 60. Consider two subspaces *V* and *W* of \mathbb{R}^n , where *V* is contained in *W*. Explain why dim(*V*) \leq dim(*W*). (This statement seems intuitively rather obvious. Still, we cannot rely on our intuition when dealing with \mathbb{R}^n .)
- 61. Consider two subspaces *V* and *W* of \mathbb{R}^n , where *V* is contained in *W*. In Exercise 60, we learned that $\dim(V) \leq \dim(W)$. Show that if $\dim(V) = \dim(W)$, then V = W.
- 62. Consider a subspace *V* of \mathbb{R}^n with dim(*V*) = *n*. Explain why *V* = \mathbb{R}^n .
- 81. Consider a 4×2 matrix **A** and a 2×5 matrix **B**.
 - a. What are the possible dimensions of the kernel of AB?
 - b. What are the possible dimensions of the *image* of **AB**?

Section 3.4:

In Exercises 5, 7, 17, and 18, determine whether the vector \mathbf{x} is in the span *V* of the vectors $\mathbf{v}_1, \mathbf{v}_2, \dots, \mathbf{v}_m$ (proceed "by inspection" if possible, and use the reduced row-echelon form if necessary). If \mathbf{x} is in *V*, find the coordinates of \mathbf{x} with respect to the basis $\mathcal{B} = \{\mathbf{v}_1, \mathbf{v}_2, \dots, \mathbf{v}_m\}$ of *V*, and write the coordinate vector $[\mathbf{x}]_{\mathcal{B}}$.

5.
$$\mathbf{x} = \begin{bmatrix} 7\\16 \end{bmatrix}; \mathbf{v}_1 = \begin{bmatrix} 2\\5 \end{bmatrix}, \mathbf{v}_2 = \begin{bmatrix} 5\\12 \end{bmatrix}$$

7. $\mathbf{x} = \begin{bmatrix} 3\\1\\-4 \end{bmatrix}; \mathbf{v}_1 = \begin{bmatrix} 1\\-1\\0 \end{bmatrix}, \mathbf{v}_2 = \begin{bmatrix} 0\\1\\-1 \end{bmatrix}$
17. $\mathbf{x} = \begin{bmatrix} 1\\1\\1\\-1 \end{bmatrix}; \mathbf{v}_1 = \begin{bmatrix} 1\\0\\2\\0 \end{bmatrix}, \mathbf{v}_2 = \begin{bmatrix} 0\\1\\3\\0 \end{bmatrix}, \mathbf{v}_3 = \begin{bmatrix} 0\\0\\4\\1 \end{bmatrix}$
18. $\mathbf{x} = \begin{bmatrix} 5\\4\\3\\2 \end{bmatrix}; \mathbf{v}_1 = \begin{bmatrix} 1\\1\\0\\0 \end{bmatrix}, \mathbf{v}_2 = \begin{bmatrix} 0\\1\\1\\0 \end{bmatrix}, \mathbf{v}_3 = \begin{bmatrix} 0\\-1\\0\\1 \end{bmatrix}$

27. Find the matrix **B** of the linear transformation $T(\mathbf{x}) = \mathbf{A}\mathbf{x}$ with respect to the basis $\mathcal{B} = \{\mathbf{v}_1, \mathbf{v}_2, \mathbf{v}_3\}$ where

$$\mathbf{A} = \begin{bmatrix} 4 & 2 & -4 \\ 2 & 1 & -2 \\ -4 & -2 & 4 \end{bmatrix}; \ \mathbf{v}_1 = \begin{bmatrix} 2 \\ 1 \\ -2 \end{bmatrix}; \ \mathbf{v}_2 = \begin{bmatrix} 0 \\ 2 \\ 1 \end{bmatrix}; \ \mathbf{v}_3 = \begin{bmatrix} 1 \\ 0 \\ 1 \end{bmatrix}.$$

Let $\mathcal{B} = \{\mathbf{v}_1, \mathbf{v}_2, \mathbf{v}_3\}$ be any basis of \mathbf{R}^3 consisting of perpendicular unit vectors, such that $\mathbf{v}_1 \times \mathbf{v}_2 = \mathbf{v}_3$. 32. Find the \mathcal{B} -matrix \mathbf{B} of the linear transformation $T(\mathbf{x}) = \mathbf{x} \times \mathbf{v}_3$ from \mathbf{R}^3 to \mathbf{R}^3 . Interpret *T* geometrically.

33. Find the \mathscr{B} -matrix **B** of the linear transformation $T(\mathbf{x}) = (\mathbf{v}_2 \cdot \mathbf{x})\mathbf{v}_2$ from \mathbf{R}^3 to \mathbf{R}^3 . Interpret *T* geometrically. 34. Let $\mathscr{B} = {\mathbf{v}_1, \mathbf{v}_2, \mathbf{v}_3}$ be any basis of \mathbf{R}^3 consisting of perpendicular unit vectors, such that $\mathbf{v}_1 \times \mathbf{v}_2 = \mathbf{v}_3$. Find

the *B*-matrix **B** of the linear transformation $T(\mathbf{x}) = \mathbf{x} - 2(\mathbf{v}_3 \cdot \mathbf{x})\mathbf{v}_3$ from \mathbf{R}^3 to \mathbf{R}^3 . Interpret *T* geometrically.

- 37. Find a basis \mathscr{B} of \mathbb{R}^n such that the \mathscr{B} -matrix \mathbb{B} of the linear transformation given by orthogonal projection T onto the line in \mathbb{R}^2 spanned by $\begin{bmatrix} 1 \\ 2 \end{bmatrix}$ is diagonal.
- 39. Find a basis $\boldsymbol{\mathcal{B}}$ of \mathbf{R}^n such that the $\boldsymbol{\mathcal{B}}$ -matrix \mathbf{B} of the linear transformation given by reflection T about the line in \mathbf{R}^3 spanned by $\begin{bmatrix} 1\\2\\3 \end{bmatrix}$ is diagonal.

45. Consider the plane $2x_1 - 3x_2 + 4x_3 = 0$ Find a basis $\boldsymbol{\mathcal{B}}$ of this plane such that $\mathbf{x}_{\boldsymbol{\mathcal{B}}} = \begin{bmatrix} 2\\ 3 \end{bmatrix}$ for $\mathbf{x} = \begin{bmatrix} 2\\ 0\\ -1 \end{bmatrix}$.

- 55. Consider the basis $\boldsymbol{\mathcal{B}}$ of \mathbf{R}^2 consisting of the vectors $\begin{bmatrix} 1\\1 \end{bmatrix}$ and $\begin{bmatrix} 1\\2 \end{bmatrix}$, and let $\boldsymbol{\mathcal{R}}$ be the basis consisting
 - of $\begin{bmatrix} 1 \\ 2 \end{bmatrix}$, $\begin{bmatrix} 3 \\ 4 \end{bmatrix}$. Find a matrix **P** such that $\begin{bmatrix} \mathbf{x} \end{bmatrix}_{\mathcal{R}} = \mathbf{P} \begin{bmatrix} \mathbf{x} \end{bmatrix}_{\mathcal{R}}$.

Chapter 3 True/False

- There exists a 5 × 4 matrix whose image consists of all of ℝ⁵.
- The kernel of any invertible matrix consists of the zero vector only.
- The identity matrix I_n is similar to all invertible n × n matrices.
- 5. If $2\vec{u} + 3\vec{v} + 4\vec{w} = 5\vec{u} + 6\vec{v} + 7\vec{w}$, then vectors $\vec{u}, \vec{v}, \vec{w}$ must be linearly dependent.
- The column vectors of a 5 × 4 matrix must be linearly dependent.
- If \$\vec{v}_1\$, \$\vec{v}_2\$, \ldots, \$\vec{v}_n\$ and \$\vec{w}_1\$, \$\vec{w}_2\$, \ldots, \$\vec{w}_m\$ are any two bases of a subspace \$V\$ of \$\mathbb{R}^{10}\$, then \$n\$ must equal \$m\$.
- If A is a 5 × 6 matrix of rank 4, then the nullity of A is 1.
- The image of a 3 × 4 matrix is a subspace of ℝ⁴.
- The span of vectors v
 ₁, v
 ₂,..., v
 _n consists of all linear combinations of vectors v
 ₁, v
 ₂,..., v
 _n.
- If vectors v
 ₁, v
 ₂, v
 ₃, v
 ₄ are linearly independent, then vectors v
 ₁, v
 ₂, v
 ₃ must be linearly independent as well.

12. The vectors of the form $\begin{bmatrix} a \\ b \\ 0 \\ a \end{bmatrix}$ (where a and b are arbitrary real numbers) form a subspace of \mathbb{R}^4 .

- **13.** Matrix $\begin{bmatrix} 1 & 0 \\ 0 & -1 \end{bmatrix}$ is similar to $\begin{bmatrix} 0 & 1 \\ 1 & 0 \end{bmatrix}$. **14.** Vectors $\begin{bmatrix} 1 \\ 0 \\ 0 \end{bmatrix}$, $\begin{bmatrix} 2 \\ 1 \\ 0 \end{bmatrix}$, $\begin{bmatrix} 3 \\ 2 \\ 1 \end{bmatrix}$ form a basis of \mathbb{R}^3 .
- If the kernel of a matrix A consists of the zero vector only, then the column vectors of A must be linearly independent.
- If the image of an n × n matrix A is all of Rⁿ, then A must be invertible.
- If vectors \$\vec{v}_1\$, \$\vec{v}_2\$, ..., \$\vec{v}_n\$ span \$\mathbb{R}^4\$, then \$n\$ must be equal to 4.
- If vectors u
 ü, v
 i, and w
 are in a subspace V of Rⁿ, then vector 2u
 i − 3v
 + 4w
 must be in V as well.
- If matrix A is similar to matrix B, and B is similar to C, then C must be similar to A.

- If a subspace V of ℝⁿ contains none of the standard vectors e
 ₁, e
 ₂,..., e
 _n, then V consists of the zero vector only.
- If A and B are n × n matrices, and vector v is in the kernel of both A and B, then v must be in the kernel of matrix AB as well.
- If two nonzero vectors are linearly dependent, then each of them is a scalar multiple of the other.
- 23. If $\vec{v}_1, \vec{v}_2, \vec{v}_3$ are any three distinct vectors in \mathbb{R}^3 , then there must be a linear transformation T from \mathbb{R}^3 to \mathbb{R}^3 such that $T(\vec{v}_1) = \vec{e}_1, T(\vec{v}_2) = \vec{e}_2$, and $T(\vec{v}_3) = \vec{e}_3$.
- If vectors u, v, w are linearly dependent, then vector w must be a linear combination of u and v.
- If A and B are invertible n × n matrices, then AB must be similar to BA.
- If A is an invertible n × n matrix, then the kernels of A and A⁻¹ must be equal.
- 27. Matrix $\begin{bmatrix} 0 & 1 \\ 0 & 0 \end{bmatrix}$ is similar to $\begin{bmatrix} 0 & 0 \\ 0 & 1 \end{bmatrix}$. 28. Vectors $\begin{bmatrix} 1 \\ 2 \\ 3 \\ 4 \end{bmatrix}$, $\begin{bmatrix} 5 \\ 6 \\ 7 \\ 8 \end{bmatrix}$, $\begin{bmatrix} 9 \\ 8 \\ 7 \\ 6 \end{bmatrix}$, $\begin{bmatrix} 5 \\ 4 \\ 3 \\ 2 \end{bmatrix}$, $\begin{bmatrix} 1 \\ 0 \\ -1 \\ -2 \end{bmatrix}$ are linearly independent

independent.

- If a subspace V of ℝ³ contains the standard vectors *e*₁, *e*₂, *e*₃, then V must be ℝ³.
- **30.** If a 2 × 2 matrix *P* represents the orthogonal projection onto a line in \mathbb{R}^2 , then *P* must be similar to matrix $\begin{bmatrix} 1 & 0 \\ 0 & 0 \end{bmatrix}$.
- **31.** \mathbb{R}^2 is a subspace of \mathbb{R}^3 .
- 32. If an $n \times n$ matrix A is similar to matrix B, then $A + 7I_n$ must be similar to $B + 7I_n$.
- If V is any three-dimensional subspace of ℝ⁵, then V has infinitely many bases.
- 34. Matrix In is similar to 21n.
- **35.** If AB = 0 for two 2 × 2 matrices A and B, then BA must be the zero matrix as well.
- 36. If A and B are n × n matrices, and vector v is in the image of both A and B, then v must be in the image of matrix A + B as well.
- If V and W are subspaces of Rⁿ, then their union V ∪ W must be a subspace of Rⁿ as well.

- **38.** If the kernel of a 5 × 4 matrix A consists of the zero vector only and if $A\vec{v} = A\vec{w}$ for two vectors \vec{v} and \vec{w} in \mathbb{R}^4 , then vectors \vec{v} and \vec{w} must be equal.
- 39. If v
 ₁, v
 ₂, ..., v
 _n and w
 ₁, w
 ₂, ..., w
 _n are two bases of ℝⁿ, then there exists a linear transformation T from ℝⁿ to ℝⁿ such that T(v
 ₁) = w
 ₁, T(v
 ₂) = w
 ₂, ..., T(v
 _n) = w
 _n.
- If matrix A represents a rotation through π/2 and matrix B a rotation through π/4, then A is similar to B.
- 41. There exists a 2 × 2 matrix A such that im(A) = ker(A).
- If two n × n matrices A and B have the same rank, then they must be similar.
- If A is similar to B, and A is invertible, then B must be invertible as well.
- 44. If A² = 0 for a 10 × 10 matrix A, then the inequality rank(A) ≤ 5 must hold.
- 45. For every subspace V of ℝ³ there exists a 3 × 3 matrix A such that V = im(A).
- There exists a nonzero 2 × 2 matrix A that is similar to 2A.
- 47. If the 2 × 2 matrix R represents the reflection about a line in \mathbb{R}^2 , then R must be similar to matrix $\begin{bmatrix} 0 & 1 \\ 1 & 0 \end{bmatrix}$.
- **48.** If A is similar to B, then there exists one and only one invertible matrix S such that $S^{-1}AS = B$.
- 49. If the kernel of a 5 × 4 matrix A consists of the zero vector alone, and if AB = AC for two 4 × 5 matrices B and C, then matrices B and C must be equal.
- 50. If A is any n × n matrix such that A² = A, then the image of A and the kernel of A have only the zero vector in common.
- 51. There exists a 2 × 2 matrix A such that $A^2 \neq 0$ and $A^3 = 0$.
- 52. If A and B are n × m matrices such that the image of A is a subset of the image of B, then there must exist an m × m matrix C such that A = BC.
- Among the 3 × 3 matrices whose entries are all 0's and 1's, most are invertible.