Math E-21b – Spring 2024 – Homework #3

Section 2.3:

Problem 1. (2.3/14) For the matrices $\mathbf{A} = \begin{bmatrix} 1 & 1 \\ 1 & 1 \end{bmatrix}$, $\mathbf{B} = \begin{bmatrix} 1 & 2 & 3 \end{bmatrix}$, $\mathbf{C} = \begin{bmatrix} 1 & 0 & -1 \\ 2 & 1 & 0 \\ 3 & 2 & 1 \end{bmatrix}$, $\mathbf{D} = \begin{bmatrix} 1 \\ 1 \\ 1 \\ 1 \end{bmatrix}$, $\mathbf{E} = \begin{bmatrix} 5 \end{bmatrix}$,

determine which of the 25 matrix products AA, AB, AC, ..., ED, EE are defined, and compute those that are defined.

Section 2.4:

Problem 2. (2.4/66) Consider two $n \times n$ matrices **A** and **B**, such that the product **AB** is invertible. Show that the matrices **A** and **B** are both invertible. *Hint*: $AB(AB)^{-1} = I_n$ and $(AB)^{-1}AB = I_n$. Use Fact 2.4.8.

Problem 3. (2.4/67-75) For two invertible $n \times n$ matrices **A** and **B**, determine which of the formulas stated below are necessarily true.

67. $(\mathbf{A} + \mathbf{B})^2 = \mathbf{A}^2 + 2\mathbf{A}\mathbf{B} + \mathbf{B}^2$ 70. $(\mathbf{A} - \mathbf{B})(\mathbf{A} + \mathbf{B}) = \mathbf{A}^2 - \mathbf{B}^2$ 73. $(\mathbf{A}\mathbf{B}\mathbf{A}^{-1})^3 = \mathbf{A}\mathbf{B}^3\mathbf{A}^{-1}$ 68. \mathbf{A}^2 is invertible, and 71. $\mathbf{ABB}^{-1}\mathbf{A}^{-1} = \mathbf{I}_n$ 74. $(\mathbf{I}_n + \mathbf{A})(\mathbf{I}_n + \mathbf{A}^{-1}) = 2\mathbf{I}_n + \mathbf{A} + \mathbf{A}^{-1}$ $(\mathbf{A}^2)^{-1} = (\mathbf{A}^{-1})^2$ 72. $\mathbf{ABA}^{-1} = \mathbf{B}$ 75. $\mathbf{A}^{-1}\mathbf{B}$ is invertible, and 69. $\mathbf{A} + \mathbf{B}$ is invertible, and $(\mathbf{A}^{-1}\mathbf{B})^{-1} = \mathbf{B}^{-1}\mathbf{A}$ $(A+B)^{-1} = A^{-1} + B^{-1}$

Problem 4. (2.4/76) Find all linear transformations *T* from \mathbf{R}^2 to \mathbf{R}^2 such that $T \begin{vmatrix} 1 \\ 2 \end{vmatrix} = \begin{vmatrix} 2 \\ 1 \end{vmatrix}$ and $T \begin{vmatrix} 2 \\ 5 \end{vmatrix} = \begin{vmatrix} 1 \\ 3 \end{vmatrix}$. *Hint*: We are looking for the 2×2 matrices **A** such that $\mathbf{A} \begin{vmatrix} 1 \\ 2 \end{vmatrix} = \begin{vmatrix} 2 \\ 1 \end{vmatrix}$ and $\mathbf{A} \begin{vmatrix} 2 \\ 5 \end{vmatrix} = \begin{vmatrix} 1 \\ 3 \end{vmatrix}$.

These two equations can be combined to form the matrix equation $\mathbf{A} \begin{bmatrix} 1 & 2 \\ 2 & 5 \end{bmatrix} = \begin{bmatrix} 2 & 1 \\ 1 & 3 \end{bmatrix}$.

Problem 5. (2.4/78) Find the matrix A of the linear transformation T from \mathbb{R}^2 to \mathbb{R}^3 with

[1]	7	[2]	1	
$T \begin{vmatrix} 1 \\ 2 \end{vmatrix} =$	5	and $T \begin{vmatrix} 2 \\ 5 \end{vmatrix} =$	2	
	3	[2]	3	

Problem 6. (2.4/80) Consider the regular tetrahedron sketched at right, whose center is at the origin.

center is at the origin.					\ \
Let T from \mathbb{R}^3 to \mathbb{R}^3 be the rotation about the axis through points 0 and P_2 that transforms P_1 into P_3 . Find the images of the four corners of the tetrahedron under this transformation.	$P_0 \xrightarrow{T} P_1 \rightarrow P_3$ $P_2 \rightarrow P_3 \rightarrow P_$	Let <i>L</i> from \mathbb{R}^3 to \mathbb{R}^3 be the reflection about the plane through the points 0, <i>P</i> ₀ , and <i>P</i> ₃ . Find the images of the four corners of the tetrahedron under this transformation.	$\begin{array}{c} P_0 \xrightarrow{L} \\ P_1 \rightarrow \\ P_2 \rightarrow \\ P_3 \rightarrow \end{array}$	$P_1 = \begin{bmatrix} 1 \\ -1 \\ -1 \end{bmatrix}$	$P_{2} = \begin{bmatrix} -1\\1\\\end{bmatrix}$ $P_{2} = \begin{bmatrix} -1\\1\\-1\\\end{bmatrix}$
Describe the transformations in	$P_{\circ} \stackrel{T \circ L}{\rightarrow}$	$P_{\circ} \xrightarrow{L \circ T}$			
a. T^{-1} b. L^{-1} c. T^{2}	$^{2} = T \circ T$	(the composite of <i>T</i> with itself)			- 0 , D \

- d. Find the images of the four corners under the transformations $T \circ L$ and $L \circ T$. Are the two transformations the same?
- e. Find the images of the four corners under the transformation $L \circ T \circ L$. Describe this transformation geometrically.

Problem 7. (2.4/81) Find the matrices of the transformations T and L defined in Problem 6 above.

 $P_1 \rightarrow$

 $P_2 \rightarrow$

 $P_2 \rightarrow$

 $P_1 \rightarrow$

 $P_2 \rightarrow$

 $P_3 \rightarrow$

Section 3.1:

For each matrix A in Problems 8-10, find vectors that span the kernel of A. Use paper and pencil.

Problem 8. (3.1/6)
$$\mathbf{A} = \begin{bmatrix} 1 & 1 & 1 \\ 1 & 1 & 1 \\ 1 & 1 & 1 \end{bmatrix}$$

Problem 10. (3.1/12) $\mathbf{A} = \begin{bmatrix} 1 & -1 & -1 & 1 & 1 \\ -1 & 1 & 0 & -2 & 2 \\ 1 & -1 & -2 & 0 & 3 \\ 2 & -2 & -1 & 3 & 4 \end{bmatrix}$

For each matrix **A** in Problems 11-12, describe the image of the transformation $T(\mathbf{x}) = \mathbf{A}\mathbf{x}$ geometrically (as a line, plane, etc. in \mathbf{R}^2 or \mathbf{R}^3). [A <u>brief</u> justification is preferred.]

Problem 11. (3.1/20) $\mathbf{A} = \begin{bmatrix} 1 & 1 & 1 \\ 1 & 1 & 1 \\ 1 & 1 & 1 \end{bmatrix}$ **Problem 12.** (3.1/22) $\mathbf{A} = \begin{bmatrix} 2 & 1 & 3 \\ 3 & 4 & 2 \\ 6 & 5 & 7 \end{bmatrix}$

 $\begin{bmatrix} 1 & 1 \end{bmatrix}$ **Problem 13.** (3.1/32) Give an example of a linear transformation whose image is the line spanned by $\begin{bmatrix} 7\\6\\5 \end{bmatrix}$ in **R**³.

Problem 14. (3.1/34) Give an example of a linear transformation whose kernel is the line spanned by $\begin{bmatrix} -1\\1\\2 \end{bmatrix}$ in **R**³.

Problem 15. (3.1/39) Consider an $n \times p$ matrix **A** and a $p \times m$ matrix **B**.

- a. What is the relationship between ker(**AB**) and ker(**B**)? Are they always equal? Is one of them always contained in the other?
- b. What is the relationship between im(A) and im(AB)?

Problem 16. (3.1/44) Consider a matrix \mathbf{A} , and let $\mathbf{B} = \operatorname{rref}(\mathbf{A})$.

- a. Is ker(**A**) necessarily equal to ker(**B**)? Explain.
- b. Is im(**A**) necessarily equal to im(**B**)? Explain.

For additional practice (not to be turned in): Section 2.3:

If possible, compute the matrix products in Exercises 1, 2, 3, 4, 7, 10, 11, and 12, using pencil and paper.

$1. \begin{bmatrix} 1 & 1 \\ 0 & 1 \end{bmatrix} \begin{bmatrix} 1 & 2 \\ 3 & 4 \end{bmatrix}$	$2. \begin{bmatrix} 1 & -1 \\ -2 & 2 \end{bmatrix} \begin{bmatrix} 7 & 5 \\ 3 & 1 \end{bmatrix}$	$3. \begin{bmatrix} 1 & 2 & 3 \\ 4 & 5 & 6 \end{bmatrix} \begin{bmatrix} 1 & 2 \\ 3 & 4 \end{bmatrix}$	$4. \begin{bmatrix} 1 & -1 \\ 0 & 2 \\ 2 & 1 \end{bmatrix} \begin{bmatrix} 3 & 2 \\ 1 & 0 \end{bmatrix}$
$7. \begin{bmatrix} 1 & 0 & -1 \\ 0 & 1 & 1 \\ 1 & -1 & -2 \end{bmatrix} \begin{bmatrix} 1 & 2 & 3 \\ 3 & 2 & 1 \\ 2 & 1 & 3 \end{bmatrix}$	10. $\begin{bmatrix} 1 & 0 & -1 \end{bmatrix} \begin{bmatrix} 1 & 2 \\ 2 & 1 \\ 1 & 1 \end{bmatrix}$	11. $\begin{bmatrix} 1 & 2 & 3 \end{bmatrix} \begin{bmatrix} 3 \\ 2 \\ 1 \end{bmatrix}$	$12. \begin{bmatrix} 1 \\ 2 \\ 3 \end{bmatrix} \begin{bmatrix} 1 & 2 & 3 \end{bmatrix}$

27. Prove the *distributive laws* for matrices:

 $(\mathbf{A}+\mathbf{B})\mathbf{C}=\mathbf{A}\mathbf{C}+\mathbf{B}\mathbf{C}.$

and

Section 3.1:

For each matrix A in Exercises 1, 2, and 5, find vectors that span the kernel of A. Use paper and pencil.

 $\mathbf{A}(\mathbf{C} + \mathbf{D}) = \mathbf{A}\mathbf{C} + \mathbf{A}\mathbf{D}$

1.
$$\mathbf{A} = \begin{bmatrix} 1 & 2 \\ 3 & 4 \end{bmatrix}$$
 2. $\mathbf{A} = \begin{bmatrix} 2 & 3 \\ 6 & 9 \end{bmatrix}$ 5. $\mathbf{A} = \begin{bmatrix} 1 & 1 & 1 \\ 1 & 2 & 3 \\ 1 & 3 & 5 \end{bmatrix}$

19. For the matrix $\mathbf{A} = \begin{bmatrix} 1 & 2 & 3 & 4 \\ -2 & -4 & -6 & -8 \end{bmatrix}$, describe the image of the transformation $T(\mathbf{x}) = \mathbf{A}\mathbf{x}$ geometrically (as a line, plane, etc. in \mathbf{R}^2 or \mathbf{R}^3).

Describe the images and kernels of the transformations in Exercises 23 through 25 geometrically.

- 23. Reflection about the line $y = \frac{1}{3}x$ in \mathbb{R}^2 .
- 24. Orthogonal projection onto the plane x + 2y + 3z = 0 in \mathbb{R}^3 .
- 25. Rotation through an angle $\frac{\pi}{4}$ in the counterclockwise direction (in **R**²).

31. Give an example of a matrix **A** such that $im(\mathbf{A})$ is the plane with normal vector $\begin{bmatrix} 1\\3\\2 \end{bmatrix}$ in \mathbf{R}^3 .

Extra problems for those interested in economics (not to be turned in): <u>Section 2.4</u>:

- 101. Consider two $n \times n$ matrices **A** and **B** whose entries are positive or zero. Suppose that all entries of **A** are less than or equal to *s*, and all column sums of **B** are less than or equal to *r* (the *j*th column sum of a matrix is the sum of all the entries in the *j*th column). Show that all entries of the matrix **AB** are less than or equal to *sr*.
- 102. (This exercise builds on Exercise 101.) Consider an $n \times n$ matrix **A** whose entries are positive or zero. Suppose that all column sums of **A** are less 1. Let *r* be the largest column sum of **A**.
 - a. Show that the entries of A^m are less than or equal to r^m , for all positive integers *m*.
 - b. Show that $\lim_{m\to\infty} \mathbf{A}^m = \mathbf{0}$ (meaning that all entries of \mathbf{A}^m approach zero).
 - c. Show that the infinite series $\mathbf{I}_n + \mathbf{A} + \mathbf{A}^2 + \dots + \mathbf{A}^m + \dots$ converges (entry by entry).
 - d. Compute the product $(\mathbf{I}_n \mathbf{A})(\mathbf{I}_n + \mathbf{A} + \mathbf{A}^2 + \dots + \mathbf{A}^m)$. Simplify the result. Then let *m* go to infinity, and thus show that $(\mathbf{I}_n \mathbf{A})^{-1} = \mathbf{I}_n + \mathbf{A} + \mathbf{A}^2 + \dots + \mathbf{A}^m + \dots$.
- 103. (This exercise builds on Exercises 49, 101, and 102.)
 - a. Consider the industries $J_1, J_2, ..., J_n$ in an economy. We say that the industry J_j is *productive* if the *j*th column sum of the technology matrix **A** is less than 1. What does this mean in terms of economics?
 - b. We say that an economy is productive if all of its industries are productive. Exercise 102 shows that if **A** is the technology matrix of a productive economy, then the matrix $(I_n A)$ is invertible. What does this result tell you about the ability of a productive economy to satisfy consumer demand?
 - c. Interpret the formula $(\mathbf{I}_n \mathbf{A})^{-1} = \mathbf{I}_n + \mathbf{A} + \mathbf{A}^2 + \dots + \mathbf{A}^m + \dots$ derived in Exercise 102(d) in terms of economics.

Chapter 2 True/False questions (for additional practice – not to be turned in)

- 1. If A is any invertible $n \times n$ matrix, then $\operatorname{rref}(A) = I_n$.
- 2. The formula $(A^2)^{-1} = (A^{-1})^2$ holds for all invertible matrices A.
- The formula AB = BA holds for all n × n matrices A and B.
- If AB = I_n for two n × n matrices A and B, then A must be the inverse of B.
- If A is a 3 × 4 matrix and B is a 4 × 5 matrix, then AB will be a 5 × 3 matrix.
- **10.** Matrix $\begin{bmatrix} 1/2 & -1/2 \\ 1/2 & 1/2 \end{bmatrix}$ represents a rotation.
- 11. There exists a real number k such that the matrix $\begin{bmatrix} k-2 & 3 \\ -3 & k-2 \end{bmatrix}$ fails to be invertible.
- **12.** Matrix $\begin{bmatrix} -0.6 & 0.8 \\ -0.8 & -0.6 \end{bmatrix}$ represents a rotation.
- The formula det(2A) = 2 det(A) holds for all 2 × 2 matrices A.
- 14. There exists a matrix A such that
 - $\begin{bmatrix} 1 & 2 \\ 3 & 4 \end{bmatrix} A \begin{bmatrix} 5 & 6 \\ 7 & 8 \end{bmatrix} = \begin{bmatrix} 1 & 1 \\ 1 & 1 \end{bmatrix}.$

- 6. The function $T\begin{bmatrix} x\\ y\end{bmatrix} = \begin{bmatrix} y\\ 1\end{bmatrix}$ is a linear transformation.
- 7. The matrix $\begin{bmatrix} 5 & 6 \\ -6 & 5 \end{bmatrix}$ represents a rotation combined with a scaling.
- 8. If A is any invertible $n \times n$ matrix, then A commutes with A^{-1} .
- 9. The function $T\begin{bmatrix}x\\y\end{bmatrix} = \begin{bmatrix}x-y\\y-x\end{bmatrix}$ is a linear transformation.
- **28.** There exists a matrix A such that $\begin{bmatrix} 1 & 2 \\ 1 & 2 \end{bmatrix} A = \begin{bmatrix} 1 & 1 \\ 1 & 1 \end{bmatrix}$.
- **29.** The matrix $\begin{bmatrix} 1 & 1 \\ 1 & -1 \end{bmatrix}$ represents a reflection about a line.

30.
$$\begin{bmatrix} 1 & k \\ 0 & 1 \end{bmatrix}^3 = \begin{bmatrix} 1 & 3k \\ 0 & 1 \end{bmatrix}$$
 for all real numbers k.

- **31.** If matrix $\begin{bmatrix} a & b & c \\ d & e & f \\ g & h & i \end{bmatrix}$ is invertible, then matrix $\begin{bmatrix} a & b \\ d & e \end{bmatrix}$ must be invertible as well.
- 32. If A^2 is invertible, then matrix A itself must be invertible.
- **33.** If $A^{17} = I_2$, then matrix A must be I_2 .
- 34. If $A^2 = I_2$, then matrix A must be either I_2 or $-I_2$.
- If matrix A is invertible, then matrix 5A must be invertible as well.

15. Matrix $\begin{bmatrix} 1 & 2 \\ 3 & 6 \end{bmatrix}$ is invertible. **16.** Matrix $\begin{bmatrix} 1 & 1 & 1 \\ 1 & 0 & 1 \\ 1 & 1 & 0 \end{bmatrix}$ is invertible.

17. There exists an upper triangular 2 × 2 matrix A such that

$$A^2 = \begin{bmatrix} 1 & 1 \\ 0 & 1 \end{bmatrix}.$$

- **18.** The function $T\begin{bmatrix} x \\ y \end{bmatrix} = \begin{bmatrix} (y+1)^2 (y-1)^2 \\ (x-3)^2 (x+3)^2 \end{bmatrix}$ is a linear transformation.
- **19.** Matrix $\begin{bmatrix} k & -2 \\ 5 & k-6 \end{bmatrix}$ is invertible for all real numbers k.
- **20.** There exists a real number k such that the matrix $\begin{bmatrix} k-1 & -2 \\ -4 & k-3 \end{bmatrix}$ fails to be invertible.
- **21.** The matrix product $\begin{bmatrix} a & b \\ c & d \end{bmatrix} \begin{bmatrix} d & -b \\ -c & a \end{bmatrix}$ is always a scalar multiple of I_2 .
- 22. There exists a nonzero upper triangular 2×2 matrix A such that $A^2 = \begin{bmatrix} 0 & 0 \\ 0 & 0 \end{bmatrix}$.
- 23. There exists a positive integer n such that

$$\begin{bmatrix} 0 & -1 \\ 1 & 0 \end{bmatrix}^n = I_2.$$

- 24. There exists an invertible 2 × 2 matrix A such that $A^{-1} = \begin{bmatrix} 1 & 1 \\ 1 & 1 \end{bmatrix}.$
- **25.** There exists an invertible $n \times n$ matrix with two identical rows.
- **26.** If $A^2 = I_n$, then matrix A must be invertible.
- 27. There exists a matrix A such that $A \begin{bmatrix} 1 & 1 \\ 1 & 1 \end{bmatrix} = \begin{bmatrix} 1 & 2 \\ 1 & 2 \end{bmatrix}$.
- **50.** The formula $\operatorname{rref}(AB) = \operatorname{rref}(A) \operatorname{rref}(B)$ holds for all $n \times p$ matrices A and for all $p \times m$ matrices B.
- 51. There exists an invertible matrix S such that $S^{-1}\begin{bmatrix} 0 & 1 \\ 0 & 0 \end{bmatrix}$ S is a diagonal matrix.
- 52. If the linear system $A^2 \vec{x} = \vec{b}$ is consistent, then the system $A\vec{x} = \vec{b}$ must be consistent as well.
- 53. There exists an invertible 2×2 matrix A such that $A^{-1} = -A$.

- 36. If A and B are two 4 × 3 matrices such that Av = Bv for all vectors v in ℝ³, then matrices A and B must be equal.
- 37. If matrices A and B commute, then the formula $A^2B = BA^2$ must hold.
- 38. If A² = A for an invertible n × n matrix A, then A must be I_n.
- 39. If matrices A and B are both invertible, then matrix A + B must be invertible as well.
- 40. The equation A² = A holds for all 2 × 2 matrices A representing a projection.
- The equation A⁻¹ = A holds for all 2 × 2 matrices A representing a reflection.
- 42. The formula $(A\vec{v}) \cdot (A\vec{w}) = \vec{v} \cdot \vec{w}$ holds for all invertible 2×2 matrices A and for all vectors \vec{v} and \vec{w} in \mathbb{R}^2 .
- 43. There exist a 2 × 3 matrix A and a 3 × 2 matrix B such that AB = I₂.
- 44. There exist a 3 × 2 matrix A and a 2 × 3 matrix B such that AB = I₃.
- 45. If A² + 3A + 4I₃ = 0 for a 3 × 3 matrix A, then A must be invertible.
- **46.** If A is an $n \times n$ matrix such that $A^2 = 0$, then matrix $I_n + A$ must be invertible.
- If matrix A commutes with B, and B commutes with C, then matrix A must commute with C.
- 48. If T is any linear transformation from R³ to R³, then T(v × w) = T(v) × T(w) for all vectors v and w in R³.
- There exists an invertible 10 × 10 matrix that has 92 ones among its entries.
- 54. There exists an invertible 2 × 2 matrix A such that $A^{2} = \begin{bmatrix} 1 & 0 \\ 0 & -1 \end{bmatrix}.$
- 55. If a matrix $A = \begin{bmatrix} a & b \\ c & d \end{bmatrix}$ represents the orthogonal projection onto a line L, then the equation $a^2 + b^2 + c^2 + d^2 = 1$ must hold.
- 56. If A is an invertible 2 × 2 matrix and B is any 2 × 2 matrix, then the formula rref(AB) = rref(B) must hold.