Math E-21b – Spring 2025 – Homework #11

Problem 1. Determine whether the zero state is a stable equilibrium of the dynamical system $\mathbf{x}(t+1) = \mathbf{A}\mathbf{x}(t)$,

where $\mathbf{A} = \begin{bmatrix} 0.3 & 0.3 & 0.3 \\ 0.3 & 0.3 & 0.3 \\ 0.3 & 0.3 & 0.3 \end{bmatrix}$, i.e. do all trajectories approach the equilibrium (zero) state?

[Note: Zero state refers to the case where $\mathbf{x}(0) = \mathbf{0}$.]

Problem 2. Given the matrix $\mathbf{A} = \begin{bmatrix} 0.6 & k \\ -k & 0.6 \end{bmatrix}$, for which real numbers k is the zero state a stable equilibrium of the dynamical system $\mathbf{x}(t+1) = \mathbf{A}\mathbf{x}(t)$?

Problem 3. For the matrix $\mathbf{A} = \begin{bmatrix} 0.6 & -0.8 \\ 0.8 & 0.6 \end{bmatrix}$, find real closed formulas for the trajectory $\mathbf{x}(t+1) = \mathbf{A}\mathbf{x}(t)$,

where $\mathbf{x}(0) = \begin{bmatrix} 0 \\ 1 \end{bmatrix}$. Draw a rough sketch.

Problem 4. For the matrix $\mathbf{A} = \begin{bmatrix} 1 & -3 \\ 1.2 & -2.6 \end{bmatrix}$, find real closed formulas for the trajectory $\mathbf{x}(t+1) = \mathbf{A}\mathbf{x}(t)$, where $\mathbf{x}(0) = \begin{bmatrix} 0 \end{bmatrix}$ Draw a rough short the where $\mathbf{x}(0) = \begin{bmatrix} 0 \\ 1 \end{bmatrix}$. Draw a rough sketch.

Problem 5. It's easy to see that if $\mathbf{A} = \begin{bmatrix} 0 & 1 \\ 0 & 0 \end{bmatrix}$, then $\mathbf{A}^2 = \begin{bmatrix} 0 & 0 \\ 0 & 0 \end{bmatrix}$ and $\mathbf{A}^t = \begin{bmatrix} 0 & 0 \\ 0 & 0 \end{bmatrix}$ for all integers t > 1. Similarly, if $\mathbf{A} = \begin{bmatrix} 0 & a & b \\ 0 & 0 & c \\ 0 & 0 & 0 \end{bmatrix}$, then $\mathbf{A}^2 = \begin{bmatrix} 0 & 0 & ac \\ 0 & 0 & 0 \\ 0 & 0 & 0 \end{bmatrix}$, and $\mathbf{A}^t = \begin{bmatrix} 0 & 0 & 0 \\ 0 & 0 & 0 \\ 0 & 0 & 0 \end{bmatrix}$ for all integers t > 2.

More generally, if A is any $n \times n$ is any upper triangular matrix with all 0's on the main diagonal, we have that $\mathbf{A}^t = [\mathbf{0}]$ (the $n \times n$ zero matrix) for $t \ge n-1$. Such a matrix is called *nilpotent*.

(a) We have shown that if a linear transformation given by a 2×2 matrix has an eigenvalue λ with algebraic multiplicity 2 and geometric multiplicity 1, then a basis can be found such that relative to this basis the matrix of this transformation can be put in the normal form $\mathbf{B} = \begin{bmatrix} \lambda & 1 \\ 0 & \lambda \end{bmatrix}$.

By writing $\mathbf{B} = \lambda \mathbf{I} + \mathbf{A}$ where $\mathbf{A} = \begin{bmatrix} 0 & 1 \\ 0 & 0 \end{bmatrix}$ is nilpotent, calculate \mathbf{B}^t for all positive integers t.

(b) Given the matrix
$$\mathbf{A} = \begin{bmatrix} 1 & 1 \\ -1 & 3 \end{bmatrix}$$
, find $\mathbf{x}(t) = \mathbf{A}^t \mathbf{x}_0$ for all t if $\mathbf{x}_0 = \mathbf{e}_1 = \begin{bmatrix} 1 \\ 0 \end{bmatrix}$.

Problem 6. (a) Similarly, if a linear transformation given by a 3×3 matrix has an eigenvalue λ with algebraic multiplicity 3 and geometric multiplicity 1, then a basis can be found such that relative to this basis the

matrix of this transformation can be put in the normal form $\mathbf{B} = \begin{bmatrix} \lambda & 1 & 0 \\ 0 & \lambda & 1 \\ 0 & 0 & \lambda \end{bmatrix}$. By writing $\mathbf{B} = \lambda \mathbf{I} + \mathbf{A}$ where

 $\mathbf{A} = \begin{bmatrix} 0 & 1 & 0 \\ 0 & 0 & 1 \\ 0 & 0 & 0 \end{bmatrix}$ is nilpotent, calculate \mathbf{B}^{t} for all positive integers t. [*Hint*: Binomial Theorem applies.]

(b) For the matrix
$$\mathbf{A} = \begin{bmatrix} 0 & 1 & 1 \\ -3 & 3 & 2 \\ -2 & 1 & 3 \end{bmatrix}$$
, find $\mathbf{x}(t) = \mathbf{A}^t \mathbf{x}_0$ for all t if $\mathbf{x}_0 = \mathbf{e}_1 = \begin{bmatrix} 1 \\ 0 \\ 0 \end{bmatrix}$.

- **Problem 7.** Consider an affine transformation $T(\mathbf{x}) = \mathbf{A}\mathbf{x} + \mathbf{b}$, where \mathbf{A} is an $n \times n$ matrix and \mathbf{b} is a vector in \mathbf{R}^n . (Compare this with Exercise 7.3.45.) Suppose that 1 is not an eigenvalue of \mathbf{A} .
 - a. Find the vector **v** in \mathbf{R}^n such that $T(\mathbf{v}) = \mathbf{v}$; this vector is called the equilibrium state of the dynamical system $\mathbf{x}(t+1) = T(\mathbf{x}(t))$.
 - b. When is the equilibrium **v** in part (a) stable (meaning that $\lim \mathbf{x}(t) = \mathbf{v}$ for all trajectories)?

For problems 8-10, without using technology, find an orthonormal eigenbasis for the given matrix:

Problem 8.
$$\mathbf{A} = \begin{bmatrix} 6 & 2 \\ 2 & 3 \end{bmatrix}$$
 Problem 9. $\mathbf{A} = \begin{bmatrix} 0 & 1 & 1 \\ 1 & 0 & 1 \\ 1 & 1 & 0 \end{bmatrix}$ **Problem 10.** $\mathbf{A} = \begin{bmatrix} 0 & 2 & 2 \\ 2 & 1 & 0 \\ 2 & 0 & -1 \end{bmatrix}$.

Problem 11. For the matrix $\mathbf{A} = \begin{bmatrix} 1 & -2 & 2 \\ -2 & 4 & -4 \\ 2 & -4 & 4 \end{bmatrix}$, find an orthogonal matrix \mathbf{S} and a diagonal matrix \mathbf{D}

such that $S^{-1}AS = D$. Do not use technology.

Problem 12. Let *L* from \mathbf{R}^3 to \mathbf{R}^3 be the reflection about the line spanned by $\mathbf{v} = \begin{bmatrix} 1 \\ 0 \\ 2 \end{bmatrix}$.

- a. Find an orthonormal eigenbasis $\boldsymbol{\mathcal{B}}$ for L.
- b. Find the matrix **B** of *L* with respect to $\boldsymbol{\mathcal{B}}$.
- c. Find the matrix **A** of *L* with respect to the standard basis of \mathbf{R}^3 .

Problem 13. If **A** is invertible and orthogonally diagonalizable, is \mathbf{A}^{-1} orthogonally diagonalizable as well?

Note that the algebraic multiplicity agrees with the geometric multiplicity. (Why?) Hint: What is ker(A)?

b. Find the eigenvalues of the matrix
$$\mathbf{B} = \begin{bmatrix} 3 & 1 & 1 & 1 & 1 \\ 1 & 3 & 1 & 1 & 1 \\ 1 & 1 & 3 & 1 & 1 \\ 1 & 1 & 1 & 3 & 1 \\ 1 & 1 & 1 & 1 & 3 \end{bmatrix}$$
 with their multiplicities. Do not use technology.

c. Use your result in part (b) to find det(**B**).

Problem 15. Consider the matrix
$$\mathbf{A} = \begin{bmatrix} 0 & 0 & 0 & 1 \\ 0 & 0 & 1 & 0 \\ 0 & 1 & 0 & 0 \\ 1 & 0 & 0 & 0 \end{bmatrix}$$
. Find an orthonormal eigenbasis for \mathbf{A} .

For additional practice:

Section 7.6:

For the matrices in Exercises 1-4, determine whether the zero state is a stable equilibrium of the dynamical system $\mathbf{x}(t+1) = \mathbf{A}\mathbf{x}(t)$.

1.
$$\mathbf{A} = \begin{bmatrix} 0.9 & 0 \\ 0 & 0.8 \end{bmatrix}$$
 2. $\mathbf{A} = \begin{bmatrix} -1.1 & 0 \\ 0 & 0.9 \end{bmatrix}$ 3. $\mathbf{A} = \begin{bmatrix} 0.8 & 0.7 \\ -0.7 & 0.8 \end{bmatrix}$ 4. $\mathbf{A} = \begin{bmatrix} -0.9 & -0.4 \\ 0.4 & -0.9 \end{bmatrix}$

37. Consider the national income of a country, which consists of consumption, investment, and government expenditures. Here we assume the government expenditure to be constant, at G_0 , while the national income

Y(t), consumption C(t), and investment I(t) change over time. According to a simple model, we have:

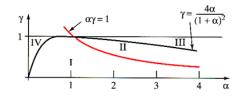
where γ is the marginal propensity to consume and α is the $\begin{cases} Y(t) = C(t) + I(t) + G_0 \\ C(t+1) = \gamma Y(t) \\ I(t+1) = \alpha [C(t+1) - C(t)] \end{cases}$ where γ is the marginal propensity to consume and α is the acceleration coefficient. (See Paul Samuelson, "Interactions between the Multiplier Analysis and the Principle of Acceleration," $(\alpha > 0)$ *Review of Economic Statistics*, May 1939, pp. 75-78.)

- a. Find the equilibrium solution of these equations, i.e., when Y(t+1) = Y(t), C(t+1) = C(t), and I(t+1) = I(t).
- b. Let y(t), c(t), and i(t) be the deviations of Y(t), C(t), and I(t), respectively, from the equilibrium state

Let y(t), c(t), and t(t) be the sequence of y(t) = c(t) + i(t)you found in part (a). These quantities are related by the equations $\begin{cases} y(t) = c(t) + i(t) \\ c(t+1) = \gamma y(t) \\ i(t+1) = \alpha [c(t+1) - c(t)] \end{cases}$. (Verify

this!) By substituting y(t) into the second equation, set up equations of the form $\begin{cases} c(t+1) = p c(t) + q i(t) \\ i(t+1) = r c(t) + s i(t) \end{cases}$.

- c. When $\alpha = 5$ and $\gamma = 0.2$, determine the stability of the zero state of this system.
- d. When $\alpha = 1$ (and γ is arbitrary, $0 < \gamma < 1$), determine the stability of the zero state.



e. For each of the four sectors in the $\alpha\gamma$ -plane, determine the stability of the zero state. Discuss the various cases, in practical terms.

40. Consider the matrix $\mathbf{A} = \begin{vmatrix} p & -q & -r & -s \\ q & p & s & -r \\ r & -s & p & q \end{vmatrix}$ where p, q, r, s are arbitrary real numbers.

(Compare this with Exercise 5.3.64.)

- a. Compute $\mathbf{A}^{\mathrm{T}}\mathbf{A}$.
- b. For which values of p, q, r, s is A invertible? Find the inverse if it exists.
- c. Find the determinant of **A**.
- d. Find the complex eigenvalues of A.
- e. If **x** is a vector in \mathbf{R}^4 , what is the relationship between $\|\mathbf{x}\|$ and $\|\mathbf{Ax}\|$?
- f. Consider the numbers $59 = 3^2 + 3^2 + 4^2 + 5^2$ and $37 = 1^2 + 2^2 + 4^2 + 4^2$. Express the number 2183 as the sum of squares of four integers: $2183 = a^2 + b^2 + c^2 + d^2$. *Hint*: Part (e) is useful. Note that $2183 = 59 \cdot 37$.
- g. The French mathematician Joseph-Louis Lagrange (1736–1813) showed that any prime number can be expressed as the sum of squares of four integers. Using this fact and your work in part (f) as a guide, show that any positive integer can be expressed in this way.