Problem 1. Determine whether the zero state is a stable equilibrium of the dynamical system $\mathbf{x}(t+1)=\mathbf{A x}(t)$, where $\mathbf{A}=\left[\begin{array}{lll}0.3 & 0.3 & 0.3 \\ 0.3 & 0.3 & 0.3 \\ 0.3 & 0.3 & 0.3\end{array}\right]$, i.e. do all trajectories approach the equilibrium (zero) state?
[Note: Zero state refers to the case where $\mathbf{x}(0)=\mathbf{0}$.]
Problem 2. Given the matrix $\mathbf{A}=\left[\begin{array}{cc}0.6 & k \\ -k & 0.6\end{array}\right]$, for which real numbers k is the zero state a stable equilibrium of the dynamical system $\mathbf{x}(t+1)=\mathbf{A x}(t)$?
Problem 3. For the matrix $\mathbf{A}=\left[\begin{array}{cc}0.6 & -0.8 \\ 0.8 & 0.6\end{array}\right]$, find real closed formulas for the trajectory $\mathbf{x}(t+1)=\mathbf{A x}(t)$, where $\mathbf{x}(0)=\left[\begin{array}{l}0 \\ 1\end{array}\right]$. Draw a rough sketch.
Problem 4. For the matrix $\mathbf{A}=\left[\begin{array}{cc}1 & -3 \\ 1.2 & -2.6\end{array}\right]$, find real closed formulas for the trajectory $\mathbf{x}(t+1)=\mathbf{A x}(t)$, where $\mathbf{x}(0)=\left[\begin{array}{l}0 \\ 1\end{array}\right]$. Draw a rough sketch.

Problem 5. It's easy to see that if $\mathbf{A}=\left[\begin{array}{ll}0 & 1 \\ 0 & 0\end{array}\right]$, then $\mathbf{A}^{2}=\left[\begin{array}{ll}0 & 0 \\ 0 & 0\end{array}\right]$ and $\mathbf{A}^{t}=\left[\begin{array}{ll}0 & 0 \\ 0 & 0\end{array}\right]$ for all integers $t>1$. Similarly, if $\mathbf{A}=\left[\begin{array}{lll}0 & a & b \\ 0 & 0 & c \\ 0 & 0 & 0\end{array}\right]$, then $\mathbf{A}^{2}=\left[\begin{array}{ccc}0 & 0 & a c \\ 0 & 0 & 0 \\ 0 & 0 & 0\end{array}\right]$, and $\mathbf{A}^{t}=\left[\begin{array}{lll}0 & 0 & 0 \\ 0 & 0 & 0 \\ 0 & 0 & 0\end{array}\right]$ for all integers $t>2$. More generally, if \mathbf{A} is any $n \times n$ is any upper triangular matrix with all 0 's on the main diagonal, we have that $\mathbf{A}^{t}=[\mathbf{0}]$ (the $n \times n$ zero matrix) for $t \geq n-1$. Such a matrix is called nilpotent.
(a) We have shown that if a linear transformation given by a 2×2 matrix has an eigenvalue λ with algebraic multiplicity 2 and geometric multiplicity 1 , then a basis can be found such that relative to this basis the matrix of this transformation can be put in the normal form $\mathbf{B}=\left[\begin{array}{ll}\lambda & 1 \\ 0 & \lambda\end{array}\right]$.
By writing $\mathbf{B}=\lambda \mathbf{I}+\mathbf{A}$ where $\mathbf{A}=\left[\begin{array}{ll}0 & 1 \\ 0 & 0\end{array}\right]$ is nilpotent, calculate \mathbf{B}^{t} for all positive integers t.
(b) Given the matrix $\mathbf{A}=\left[\begin{array}{cc}1 & 1 \\ -1 & 3\end{array}\right]$, find $\mathbf{x}(t)=\mathbf{A}^{t} \mathbf{x}_{0}$ for all t if $\mathbf{x}_{0}=\mathbf{e}_{1}=\left[\begin{array}{l}1 \\ 0\end{array}\right]$.

Problem 6. (a) Similarly, if a linear transformation given by a 3×3 matrix has an eigenvalue λ with algebraic multiplicity 3 and geometric multiplicity 1 , then a basis can be found such that relative to this basis the matrix of this transformation can be put in the normal form $\mathbf{B}=\left[\begin{array}{lll}\lambda & 1 & 0 \\ 0 & \lambda & 1 \\ 0 & 0 & \lambda\end{array}\right]$. By writing $\mathbf{B}=\lambda \mathbf{I}+\mathbf{A}$ where $\mathbf{A}=\left[\begin{array}{lll}0 & 1 & 0 \\ 0 & 0 & 1 \\ 0 & 0 & 0\end{array}\right]$ is nilpotent, calculate \mathbf{B}^{t} for all positive integers t. [Hint: Binomial Theorem applies.]
(b) For the matrix $\mathbf{A}=\left[\begin{array}{ccc}0 & 1 & 1 \\ -3 & 3 & 2 \\ -2 & 1 & 3\end{array}\right]$, find $\mathbf{x}(t)=\mathbf{A}^{t} \mathbf{x}_{0}$ for all t if $\mathbf{x}_{0}=\mathbf{e}_{1}=\left[\begin{array}{l}1 \\ 0 \\ 0\end{array}\right]$.

Problem 7. Consider an affine transformation $T(\mathbf{x})=\mathbf{A x}+\mathbf{b}$, where \mathbf{A} is an $n \times n$ matrix and \mathbf{b} is a vector in \mathbf{R}^{n}. (Compare this with Exercise 7.3.45.) Suppose that 1 is not an eigenvalue of \mathbf{A}.
a. Find the vector \mathbf{v} in \mathbf{R}^{n} such that $T(\mathbf{v})=\mathbf{v}$; this vector is called the equilibrium state of the dynamical system $\mathbf{x}(t+1)=T(\mathbf{x}(t))$.
b. When is the equilibrium \mathbf{v} in part (a) stable (meaning that $\lim _{t \rightarrow \infty} \mathbf{x}(t)=\mathbf{v}$ for all trajectories)?

For problems 8-10, without using technology, find an orthonormal eigenbasis for the given matrix:
Problem 8. $\mathbf{A}=\left[\begin{array}{ll}6 & 2 \\ 2 & 3\end{array}\right] \quad$ Problem 9. $\mathbf{A}=\left[\begin{array}{ccc}0 & 1 & 1 \\ 1 & 0 & 1 \\ 1 & 1 & 0\end{array}\right] \quad$ Problem 10. $\mathbf{A}=\left[\begin{array}{ccc}0 & 2 & 2 \\ 2 & 1 & 0 \\ 2 & 0 & -1\end{array}\right]$.
Problem 11. For the matrix $\mathbf{A}=\left[\begin{array}{ccc}1 & -2 & 2 \\ -2 & 4 & -4 \\ 2 & -4 & 4\end{array}\right]$, find an orthogonal matrix \mathbf{S} and a diagonal matrix \mathbf{D} such that $\mathbf{S}^{-1} \mathbf{A S}=\mathbf{D}$. Do not use technology.
Problem 12. Let L from \mathbf{R}^{3} to \mathbf{R}^{3} be the reflection about the line spanned by $\mathbf{v}=\left[\begin{array}{l}1 \\ 0 \\ 2\end{array}\right]$.
a. Find an orthonormal eigenbasis \mathfrak{B} for L.
b. Find the matrix \mathbf{B} of L with respect to \mathfrak{B}.
c. Find the matrix \mathbf{A} of L with respect to the standard basis of \mathbf{R}^{3}.

Problem 13. If \mathbf{A} is invertible and orthogonally diagonalizable, is \mathbf{A}^{-1} orthogonally diagonalizable as well?
Problem 14. a. Find the eigenvalues of the matrix $\mathbf{A}=\left[\begin{array}{lllll}1 & 1 & 1 & 1 & 1 \\ 1 & 1 & 1 & 1 & 1 \\ 1 & 1 & 1 & 1 & 1 \\ 1 & 1 & 1 & 1 & 1 \\ 1 & 1 & 1 & 1 & 1\end{array}\right]$ with their multiplicities.
Note that the algebraic multiplicity agrees with the geometric multiplicity. (Why?) Hint: What is $\operatorname{ker}(\mathbf{A})$?
b. Find the eigenvalues of the matrix $\mathbf{B}=\left[\begin{array}{lllll}3 & 1 & 1 & 1 & 1 \\ 1 & 3 & 1 & 1 & 1 \\ 1 & 1 & 3 & 1 & 1 \\ 1 & 1 & 1 & 3 & 1 \\ 1 & 1 & 1 & 1 & 3\end{array}\right]$ with their multiplicities. Do not use technology.
c. Use your result in part (b) to find $\operatorname{det}(\mathbf{B})$.

Problem 15. Consider the matrix $\mathbf{A}=\left[\begin{array}{llll}0 & 0 & 0 & 1 \\ 0 & 0 & 1 & 0 \\ 0 & 1 & 0 & 0 \\ 1 & 0 & 0 & 0\end{array}\right]$. Find an orthonormal eigenbasis for \mathbf{A}.

For additional practice:

Section 7.6:

For the matrices in Exercises 1-4, determine whether the zero state is a stable equilibrium of the dynamical system $\mathbf{x}(t+1)=\mathbf{A x}(t)$.

1. $\mathbf{A}=\left[\begin{array}{cc}0.9 & 0 \\ 0 & 0.8\end{array}\right]$
2. $\mathbf{A}=\left[\begin{array}{cc}-1.1 & 0 \\ 0 & 0.9\end{array}\right]$
3. $\mathbf{A}=\left[\begin{array}{cc}0.8 & 0.7 \\ -0.7 & 0.8\end{array}\right]$
4. $\mathbf{A}=\left[\begin{array}{cc}-0.9 & -0.4 \\ 0.4 & -0.9\end{array}\right]$
5. Consider the national income of a country, which consists of consumption, investment, and government expenditures. Here we assume the government expenditure to be constant, at G_{0}, while the national income $Y(t)$, consumption $C(t)$, and investment $I(t)$ change over time. According to a simple model, we have:
$\left\{\begin{aligned} Y(t) & =C(t)+I(t)+G_{0} \\ C(t+1) & =\gamma Y(t) \\ I(t+1) & =\alpha[C(t+1)-C(t)]\end{aligned}\right\} \quad \begin{aligned} & \\ & \begin{array}{l}(0<\gamma<1), \\ (\alpha>0)\end{array}\end{aligned}$ where γ is the marginal propensity to consume and α is the acceleration coefficient. (See Paul Samuelson, "Interactions between the Multiplier Analysis and the Principle of Acceleration," Review of Economic Statistics, May 1939, pp. 75-78.)
a. Find the equilibrium solution of these equations, i.e., when $Y(t+1)=Y(t), C(t+1)=C(t)$, and $I(t+1)=I(t)$.
b. Let $y(t), c(t)$, and $i(t)$ be the deviations of $Y(t), C(t)$, and $I(t)$, respectively, from the equilibrium state you found in part (a). These quantities are related by the equations $\left\{\begin{array}{c}y(t)=c(t)+i(t) \\ c(t+1)=\gamma y(t) \\ i(t+1)=\alpha[c(t+1)-c(t)]\end{array}\right\}$. (Verify this!) By substituting $y(t)$ into the second equation, set up equations of the form $\left\{\begin{array}{c}c(t+1)=p c(t)+q i(t) \\ i(t+1)=r c(t)+s i(t)\end{array}\right\}$.
c. When $\alpha=5$ and $\gamma=0.2$, determine the stability of the zero state of this system.
d. When $\alpha=1$ (and γ is arbitrary, $0<\gamma<1$), determine the stability of the zero state.
e. For each of the four sectors in the $\alpha \gamma$-plane, determine the stability
 of the zero state. Discuss the various cases, in practical terms.
6. Consider the matrix $\mathbf{A}=\left[\begin{array}{cccc}p & -q & -r & -s \\ q & p & s & -r \\ r & -s & p & q \\ s & r & -q & p\end{array}\right]$ where p, q, r, s are arbitrary real numbers.
(Compare this with Exercise 5.3.64.)
a. Compute $\mathbf{A}^{\mathrm{T}} \mathbf{A}$.
b. For which values of p, q, r, s is \mathbf{A} invertible? Find the inverse if it exists.
c. Find the determinant of \mathbf{A}.
d. Find the complex eigenvalues of \mathbf{A}.
e. If \mathbf{x} is a vector in \mathbf{R}^{4}, what is the relationship between $\|\mathbf{x}\|$ and $\|\mathbf{A} \mathbf{x}\|$?
f. Consider the numbers $59=3^{2}+3^{2}+4^{2}+5^{2}$ and $37=1^{2}+2^{2}+4^{2}+4^{2}$. Express the number 2183 as the sum of squares of four integers: $2183=a^{2}+b^{2}+c^{2}+d^{2}$.
Hint: Part (e) is useful. Note that $2183=59 \cdot 37$.
g. The French mathematician Joseph-Louis Lagrange (1736-1813) showed that any prime number can be expressed as the sum of squares of four integers. Using this fact and your work in part (f) as a guide, show that any positive integer can be expressed in this way.
