Math E-21a - Some useful facts

Basic Chain Rule: $\frac{d}{d t}[f(x(t), y(t))]=\frac{\partial f}{\partial x} \frac{d x}{d t}+\frac{\partial f}{\partial y} \frac{d y}{d t}=\nabla f \cdot \mathbf{v}$ for a path in \mathbf{R}^{2};

$$
\frac{d}{d t}[f(x(t), y(t), z(t))]=\frac{\partial f}{\partial x} \frac{d x}{d t}+\frac{\partial f}{\partial y} \frac{d y}{d t}+\frac{\partial f}{\partial z} \frac{d z}{d t}=\nabla f \cdot \mathbf{v} \text { for a path in } \mathbf{R}^{3} .
$$

Directional Derivative of a function f in the direction \mathbf{u} (unit vector): $D_{\mathbf{u}} f=\nabla f \cdot \mathbf{u}$
Fundamental Theorem of Line Integrals: If V is differentiable and C is a curve from point \mathbf{x}_{0} to point \mathbf{x}_{1}, then $\int_{C} \overrightarrow{\nabla V} \cdot \overrightarrow{d r}=V\left(\mathbf{x}_{1}\right)-V\left(\mathbf{x}_{0}\right)$.

Green's Theorem: If $P(x, y)$ and $Q(x, y)$ are differentiable with continuous $1^{\text {st }}$ partial derivatives through a bounded region D in \mathbf{R}^{2} and if C is the boundary of D oriented in the counterclockwise sense, then $\oint_{C} P(x, y) d x+Q(x, y) d y=\iint_{D}\left(\frac{\partial Q}{\partial x}-\frac{\partial P}{\partial y}\right) d A$.
Curl and Divergence: If $\mathbf{F}(x, y, z)=\langle P(x, y, z), Q(x, y, z), R(x, y, z)\rangle$ is a vector field in \mathbf{R}^{3} with differentiable component functions, then $\operatorname{curl} \mathbf{F}=\left\langle\frac{\partial R}{\partial y}-\frac{\partial Q}{\partial z}, \frac{\partial P}{\partial z}-\frac{\partial R}{\partial x}, \frac{\partial Q}{\partial x}-\frac{\partial P}{\partial y}\right\rangle$ and $\operatorname{div} \mathbf{F}=\frac{\partial P}{\partial x}+\frac{\partial Q}{\partial y}+\frac{\partial R}{\partial z}$.

Divergence Theorem: If the components of the vector field \mathbf{F} are differentiable with continuous $1^{\text {st }}$ partial derivatives through a bounded region B in \mathbf{R}^{3} and if S is the boundary of B oriented with unit outward normal vector \mathbf{n}, then $\oiint_{S} \mathbf{F} \cdot d \mathbf{S}=\oiint_{S}(\mathbf{F} \cdot \mathbf{n}) d S=\iiint_{B}(\operatorname{div} \mathbf{F}) d V$.

Stokes' Theorem: If the components of the vector field \mathbf{F} are differentiable with continuous $1^{\text {st }}$ partial derivatives through a surface S in \mathbf{R}^{3} oriented with unit normal vector \mathbf{n} and if C is the boundary of S oriented counterclockwise relative to \mathbf{n}, then $\oint_{C} \mathbf{F} \cdot d \mathbf{r}=\iint_{S}(\operatorname{curl} \mathbf{F}) \cdot \mathbf{n} d S=\iint_{S}(\operatorname{curl} \mathbf{F}) \cdot d \mathbf{S}$.
Surface integration "toolkits":
Sphere of radius $\boldsymbol{R}:\left\{\begin{array}{l}x=R \cos \theta \sin \phi \\ y=R \sin \theta \sin \phi \\ z=R \cos \phi\end{array}\right\}, \mathbf{n}=\frac{\langle x, y, z\rangle}{R}, d S=R^{2} \sin \phi d \phi d \theta, x^{2}+y^{2}+z^{2}=R^{2}$
Cylinder of radius $\boldsymbol{R}:\left\{\begin{array}{l}x=R \cos \theta \\ y=R \sin \theta \\ z=z\end{array}\right\}, \mathbf{n}=\frac{\langle x, y, 0\rangle}{R}, d S=R d z d \theta, x^{2}+y^{2}=R^{2}$
Graph of $\boldsymbol{f}(\boldsymbol{x}, \boldsymbol{y})$: $\left\{\begin{array}{l}x=x \\ y=y \\ z=f(x, y)\end{array}\right\}, \mathbf{n}=\frac{\left\langle-f_{x},-f_{y}, 1\right\rangle}{\sqrt{1+f_{x}{ }^{2}+f_{y}{ }^{2}}}, d S=\frac{d x d y}{|\mathbf{n} \cdot \mathbf{k}|}=\sqrt{1+f_{x}{ }^{2}+f_{y}{ }^{2}} d x d y$
General parameterized surface: $\mathbf{r}(s, t)=\langle x(s, t), y(s, t), z(s, t)\rangle, d S=\left\|\frac{\partial \mathbf{r}}{\partial s} \times \frac{\partial \mathbf{r}}{\partial t}\right\| d s d t, \overline{d S}=\left(\frac{\partial \mathbf{r}}{\partial s} \times \frac{\partial \mathbf{r}}{\partial t}\right) d s d t$
Geometry formulas: Volume of a ball of radius $R:=\frac{4}{3} \pi R^{3}$; Surface area of a sphere of radius $R:=4 \pi R^{2}$
Useful identities: $\cos ^{2} \theta=\frac{1+\cos 2 \theta}{2}, \sin ^{2} \theta=\frac{1-\cos 2 \theta}{2}, \sin ^{2} \theta+\cos ^{2} \theta=1$

