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Integration on Surfaces - Toolkits 
It is often necessary to measure the aggregate amount of something on a surface. Examples include the total 

area of a surface, total charge for a given charge density function, total population of people on a planet, or 
total flux (flow) of a vector field through a surface. A general surface integral of a function ( , , )g x y z  over a 
surface S is denoted by 

S
g dS∫∫  where, as always, the integral represents the limit of Riemann Sum. 

The main tools for calculating such integrals are (a) parameterization of the surface (or, equivalently, 
finding two coordinates defined on the surface that provide a “mesh” for the surface), and (b) an expression for 
the “element of surface area” dS defined by the parameterization or coordinates. For flux integrals, it’s also 
handy to have an expression for a unit normal vector n for the surface. Though there is an all-purpose method 
for calculating surface integrals for any parameterized surface, it is often easier and more geometrically clear to 
focus on the special cases of cylinders, spheres, and graphs. Each situation has its own toolkit. 

General method for any parameterized surface 
Parameterization: Suppose S is a surface parameterized by a vector-valued function 

( , ) ( , ), ( , ), ( , )s t x s t y s t z s t=r  where the parameters s and t vary over some domain in 
the parameter space D. The only requirement is that the curves in the surface 
produced by varying one parameter at a time provide a mesh on the surfaces, i.e. 
these curves should intersect “cleanly” (transversally) and produce a patchwork of 
small cells on the surface that can be used to build Riemann Sums on the surface. 

Surface area element: If we vary s by an amount s∆ , we move an approximate vector 

displacement along a cross-section of the graph of s
s
∂ ∆
∂
r , and if we also vary t by 

an amount t∆ , we move an approximate vector displacement along a cross-section 

of the graph of t
t

∂ ∆
∂
r . 

 

 

These two displacements will span a “patch” of the surface and the cross-product can be used to determine 
its approximate area. Specifically, 

s t s t
s t s t
∂ ∂ ∂ ∂     ∆ × ∆ = × ∆ ∆     ∂ ∂ ∂ ∂     
r r r r . 

This is a vector with magnitude approximately equal to the area of a “patch” on the graph surface and 
direction normal to the surface (actually in the upward normal direction). The magnitude is 

S s t
s t
∂ ∂∆ ≅ × ∆ ∆
∂ ∂
r r . Within a Riemann Sum expression as the limit of the mesh tends to zero, this yields 

the surface area element dS dsdt
s t
∂ ∂= ×
∂ ∂
r r  for a general parameterized surface. We can also make use of 

the “vector element of surface area” d dS dsdt
s t
∂ ∂ = = × ∂ ∂ 
r rS n  where n denotes the unit normal vector to 

the surface, oriented in a manner consistent with the cross-product. 
Unit normal vector: From the above calculation, we also see that a unit normal vector to the surface with 

orientation consistent with the cross product is s t

s t

∂ ∂ × ∂ ∂ =
∂ ∂×
∂ ∂

r r

n
r r

. 

In particular, if , ,P Q R=F  is a vector field defined on the surface, the flux of F through S can be 

calculated as ( )
S D s td dsdt∂ ∂

∂ ∂
 ⋅ = ⋅ × ∫∫ ∫∫ r rF S F . [The integrand is the triple scalar product.] 
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Cylinder 
Cartesian equation: 2 2 2x y R+ =  

Parameterization: 
cos
sin

x R
y R
z z

θ
θ

=
=
=

. The parameter θ allows movement around the cylinder with 

0 2θ π≤ ≤ , and the parameter z (which does double-duty as both a coordinate and a 
parameter) allows movement up and down the cylinder. 

Surface area element: If we vary θ by an amount θ∆ , we move a distance R θ∆  around the 
cylinder, and if we also move an amount z∆  to span a “patch” of the surface, the area of 
this patch will be ( )( )S R z θ∆ = ∆ ∆ . Within a Riemann Sum expression as the limit of the 
mesh tends to zero, this yields the surface area element dS Rdzdθ=  for a cylinder. 

 

 

Unit normal vector: We can use gradient methods or observation to see that at any point ( , , )x y z  on the 

cylinder, the outward unit normal vector to the surface is 
, ,0 cos ,sin ,0x y
R

θ θ= =n . 

This method can be modified as necessary for cylinders around the x-axis or y-axis. 

Sphere 
Cartesian equation: 2 2 2 2x y z R+ + =  

Parameterization: 
cos sin
sin sin
cos

x R
y R
z R

θ φ
θ φ
φ

=
=
=

. The parameter θ (longitude) allows movement 

around the sphere with 0 2θ π≤ ≤ , and the parameter φ  (the inclination, related to 
latitude) allows movement up and down the sphere with 0 φ π≤ ≤ . 

Surface area element: If we vary φ  by an amount φ∆ , we move a distance R φ∆  along a 
longitude, and if we also move an amount θ∆  along a latitude (at a radius from the z-
axis of sinr R φ= ), we will move a distance sinR φ θ∆  along a latitude. Together, 
these will span a “patch” of the surface with area approximately 

2( sin )( ) sinS R R Rφ θ φ φ θ φ∆ ≅ ∆ ∆ = ∆ ∆ . Within a Riemann Sum expression as the 
limit of the mesh tends to zero, this yields the surface area element 

2 sindS R d dφ φ θ=  for a sphere. 

 

 

Unit normal vector: We can use gradient methods or observation to see that at any point ( , , )x y z  on the sphere, 

the outward unit normal vector to the surface is 
, , cos sin ,sin sin ,cosx y z
R

θ φ θ φ φ= =n . 

 
Graph ( , )z f x y=  
Cartesian equation: ( , )z f x y=  

Parameterization: 
( , )

x x
y y
z f x y

=
=
=

 or ( , ) , , ( , )x y x y f x y=r . The variables x and y here do 

double-duty as both parameters and coordinates. They vary in the xy-plane over 
the domain of the function that describes this graph surface.  

Surface area element: If we vary x by an amount x∆ , we move an approximate vector displacement along a 

cross-section of the graph of 1,0, xx f x
x
∂ ∆ = ∆
∂
r , and if we also vary y by an amount y∆ , we move an 
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approximate vector displacement along a cross-section of the graph of 0,1, yy f y
y
∂ ∆ = ∆
∂
r . Together, these 

two displacements will span a “patch” of the surface and we can use the cross-product to determine its 
approximate area. Specifically, 

1,0, 0,1, , ,1x y x yx y x y f f x y f f x y
x y x y

   ∂ ∂ ∂ ∂ ∆ × ∆ = × ∆ ∆ = × ∆ ∆ = − − ∆ ∆     ∂ ∂ ∂ ∂     
r r r r . 

This is a vector with magnitude approximately equal to the area of a “patch” on the graph surface and 
direction normal to the surface (actually in the upward normal direction). The magnitude is 

2 21 x yS f f x y∆ ≅ + + ∆ ∆ . Within a Riemann Sum expression as the limit of the mesh tends to zero, this 

yields the surface area element 2 21 x ydS f f dxdy≅ + +  for a graph surface. We can also make use of the 

“vector element of surface area” , ,1x yd dS f f dxdy= = − −S n  where n denotes the (upward) unit normal 

vector to the graph surface. 
Unit normal vector: From the above calculation, we see that a unit (upward) normal vector to a graph surface is 

2 2

, ,1
1

x y

x y

f f
f f

− −
=

+ +
n . An alternative geometric argument also shows that 2 21 x y

dxdydS f f dxdy= = + +⋅n k . 

Note: [This can be easily adapted to the case where ( , )x f y z=  with 2 21 y z
dydzdS f f dydz= = + +⋅n i  or 

where ( , )y f x z=  with 2 21 x z
dxdzdS f f dxdz= = + +⋅n j .] 

Examples: 
(1) Surface area of a sphere S of radius R: 

2 2

0 0
Area( ) sin

S
S dS R d d

π π
φ φ θ= =∫∫ ∫ ∫ . The inner integral gives 2 2 2

0
cos ( 1 1) 2R R Rφ π

φ
φ =

=
− = − − − = , and the 

outer integral gives 2 2(2 )(2 ) 4R Rπ π= . 
(2) The flux of the vector field 23 , ,x y z= −F  outward through a sphere of radius 2 centered at the origin: 

Flux
S S

d dS= ⋅ = ⋅∫∫ ∫∫F S F n . We use the unit outward normal vector , ,
2

x y z
=n , so 

2 2 3
2 , , 33 , ,

2 2
x y z x y zx y z − +⋅ = − ⋅ =F n . Therefore, 

2 2 33Flux
2S

x y z dS − +=  
 ∫∫ . If we substitute the 

parameterization 
2cos sin
2sin sin
2cos

x
y
z

θ φ
θ φ
φ

=  = 
 = 

 and the area element 4sindS d dφ φ θ= , we get 

2 2 3 2 3 3

0 0
Flux (24cos sin 8sin sin 16cos sin ) d d

π π
θ φ θ φ φ φ φ θ= − +∫ ∫ . 

This may not be the simplest integral, but it’s quite doable. The inner integral gives 
2 2 2 2 3

0

3
2 2 4 2 2

0
0

4
3

4 4
3 3

(24cos (1 cos )sin 8sin (1 cos )sin 16cos sin )

cos[24cos 8sin ] cos 4 cos [24cos 8sin ] 4[0]
3

1 cos 2 1 cos 224 8 (8 16cos 2 )
2 2

d
π

π
π

θ φ φ θ φ φ φ φ φ

φθ θ φ φ θ θ

θ θ θ

− − − +

    = − − + − = − −      

 + −   = − = +        

∫
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The outer integral is then 
2

0
32 644

3 3 3(8 16cos 2 ) 2d
π πθ θ π+ = ⋅ =∫ . 

Note: This integral can also be (more simply) done using the Divergence Theorem. We calculate 
div F 3 1 2 2 2z z= − + = + , and 

34
3Bnd( )

64
3Flux (div ) (2 2 ) 2 2 Vol( ) 2 ( 2 )

S B B B B
d dV z dV dV B ππ

=
= ⋅ = = + = = ⋅ = ⋅ ⋅ =∫∫ ∫∫∫ ∫∫∫ ∫∫∫F S F


. 

(3) Surface area of the paraboloid 2 2z x y= +  lying over the disk 2 2 4x y+ ≤  in the xy-plane. 

There are several good approaches. If were to use ( , )x y  as parameters, we might describe the paraboloid 

parametrically by 
2 2

x x
y y
z x y

 =
 = 
 = + 

 or 2 2( , ) , ,x y x y x y= +r . The methods described above (with ( , )z f x y=

) give us that 2 2 2 2 2 21 1 (2 ) (2 ) 1 4( )x ydS f f dxdy x y dxdy x y dxdy= + + = + + = + + , so the surface area 

would be 2 21 4( )
D

x y dxdy+ +∫∫ . The sensible thing is to change to polar coordinates to calculate this 

integral over the disk. This gives 
2 2 2

0 0 61 4 (17 17 1)r rdrd
π πθ+ = = −∫ ∫  . 

We could also have begun by using ( , )r θ  as parameters. This would give 
2

cos
sin

x r
y r
z r

θ
θ

 =
 = 
 = 

 or 

2( , ) cos , sin ,r r r rθ θ θ=r . We calculate cos ,sin , 2r
r

θ θ∂
=

∂
r  and sin , cos ,0r rθ θ

θ
∂

= −
∂

r , so 

2 22 cos , 2 sin , 2 cos , 2 sin ,1d r r r r r r
r

θ θ θ θ
θ

∂ ∂
= × = − − = − −
∂ ∂
r rS  and 

2 2 2 22 cos , 2 sin ,1 4 (cos sin ) 1 1 4dS drd r r r drd r r drd r r drd
r

θ θ θ θ θ θ θ θ
θ

∂ ∂
= × = − − = + + = +

∂ ∂
r r , so 

we again get 
2 2 2

0 0 6Area( ) 1 4 (17 17 1)
S

S dS r rdrd
π πθ= = + = = −∫∫ ∫ ∫  . 


