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Orthogonal Curvilinear Coordinates:   Div, Grad, Curl, and the Laplacian 

The most common way that the gradient of a function, the divergence of a vector field, and the curl of a vector 
field are presented is entirely algebraic with barely any indication of what these mean. Furthermore, the 
presentation is almost always in terms of the standard Euclidean coordinates ( , , )x y z  for R3. 

For a function ( , , )f x y z  and a vector field ( , , ) ( , , ) ( , , ) ( , , )x y z P x y z Q x y z R x y z  F i j k , we have: 
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It is often the case that a vector field in R3 is most easily understood in coordinates other than standard 
Euclidean coordinates, e.g. a radial vector field associated with an inverse square law such as gravitational 
force of a point mass, or the electric field of a point charge. 

Suppose we have coordinates 1 2 3( , , )u u u  and that we can write the standard ( , , )x y z  coordinates in terms of the 

1 2 3( , , )u u u  coordinates, i.e.  1 2 3 1 2 3 1 2 3 1 2 3( , , ) ( , , ) ( , , ), ( , , ), ( , , )x y z u u u x u u u y u u u z u u u r . By varying each 

coordinate independently, we can produce tangent vectors in each direction: 
1u


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r
, 

2u
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r
, and 

3u




r
. We can then 

normalize each of these tangent vectors to produce unit vectors in these three independent directions. These are 
often denoted (especially in physics) by placing a “hat” on the respective variable, i.e. unit vectors 1̂u , 2û , and 

3û . If these vectors are mutually perpendicular (orthogonal) at every point, we refer to the coordinates 

1 2 3( , , )u u u  as orthogonal curvilinear coordinates. 

For example, Euclidean (Cartesian) coordinates are curvilinear with 1̂u  i , 2û  j , and 3û  k . 

In spherical coordinates ( , , )   , we have  ( , , ) ( , , ) cos sin , sin sin , cosx y z            r  and the unit 

direction vectors are ̂  (unit vector radially outward), ̂  (unit southward vector tangent to great circles), and ̂  
(unit eastward vector tangent to latitudes). These are easily calculated to be: 

ˆ cos sin ,sin sin ,cos (cos sin ) (sin sin ) (cos )             i j k  

ˆ cos cos ,sin cos , sin (cos cos ) (sin cos ) (sin )              i j k  

ˆ sin ,cos ,0 (sin ) (cos )        i j  

We can, of course, do the same in R2, but the divergence and curl of a vector field have a more natural meaning 
in R3, so we’ll focus on that case. The formulation of the 2D case is left as an exercise. 

If we define the “scale factors” as 1
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, then an incremental change in 

position dr will be expressible as 1 2 3 1 1 1 2 2 2 3 3 3
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element of arc length ds  will satisfy 2 2 2 2 2 2 2
1 1 2 2 3 3ds h du h du h du   ; and the volume element will be 

expressible as 1 2 3 1 2 3dV h h h du du du . 
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For example, in spherical coordinates we have 1 1h
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have the vector displacement ˆ ˆˆ( ) ( ) ( sin )d d d d d d d           
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r . The increment 

of arclength ds  satisfies 2 2 2 2 2 2 2sinds d d d         and the volume element is 2 sindV d d d     . 

For any function 1 2 3( , , )f u u u  and a vector field 1 2 3 1 1 2 3 1 2 1 2 3 2 3 1 2 3 3ˆ ˆ( , , ) ( , , ) ( , , ) ( , , )u u u A u u u u A u u u u A u u u u  F  

(note that 1 2 3, ,A A A  are the component functions of F relative to the orthogonal curvilinear coordinates), we 

define the gradient vector, divergence, and curl as follows: 
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Exercise 1. Show that these general expressions yield the usual formulas for the gradient of a function, the 
divergence of a vector field, and the curl of a vector field in Euclidean ( , , )x y z  coordinates. 

Exercise 2. Calculate the expressions for the gradient of a function, the divergence of a vector field, and the curl 
of a vector field in cylindrical ( , , )r z  coordinates. 

Exercise 3. Calculate the expressions for the gradient of a function, the divergence of a vector field, and the curl 
of a vector field in spherical ( , , )    coordinates. 

Exercise 4. Use the above result to calculate the divergence of a vector field in R3 governed by an inverse 

square law, i.e. a vector field of the form 
2

ˆ
k 


F . 

One other important function encountered in the study of waves and heat flow (as well as in quantum 
mechanics) is the Laplacian of a function f. It is often denoted by 2 f  because it is defined (in Cartesian 

coordinates) by 
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As in the case of the gradient, divergence, and curl, this algebraic definition tells us very little about what the 
Laplacian measures, and the definition is very specific to Euclidean ( , , )x y z  coordinates. 

The more general definition of the Laplacian in orthogonal curvilinear coordinates 1 2 3( , , )u u u  is as follows: 
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Exercise 5: Show that this expression yields the usual formula for the Laplacian of a function in Euclidean 
( , , )x y z  coordinates. 

Exercise 6: Calculate the expression for the Laplacian of a function in cylindrical ( , , )r z  coordinates. 

Exercise 7: Calculate the expression for the Laplacian of a function in spherical ( , , )    coordinates. 

Exercise 8. (a) Formulate an expression for the two-dimension divergence of a vector field in R2 in orthogonal 
curvilinear coordinates 1 2( , )u u . [In Cartesian coordinates, if ( , ) ( , ) ( , )x y P x y Q x y F i j , the 

2D-divergence is defined as div 
P Q

x y

 
 
 

F .] 

(b) Use this general expression to find a formula for the 2D-divergence of a vector field given in 

polar coordinates as ˆˆ( , ) ( , ) ( , )r L r r M r    F . 

(c) Use the above result to calculate the 2D-divergence of a vector field governed by an inverse 

square law in R2, i.e. a vector field of the form 
2

ˆ
k

r
r

F . 

Exercise 9. (a) Formulate an expression for the two-dimension curl of a vector field in R2 in orthogonal 
curvilinear coordinates 1 2( , )u u . [In Cartesian coordinates, if ( , ) ( , ) ( , )x y P x y Q x y F i j , the 

2D-curl is defined as curl 
Q P

x y

 
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F .] 

(b) Use this general expression to find a formula for the 2D-curl of a vector field given in polar 

coordinates as ˆˆ( , ) ( , ) ( , )r L r r M r    F . 

(c) Use the above result to calculate the 2D-curl of a vector field governed by an inverse square law 

in R2, i.e. a vector field of the form 
2

ˆ
k

r
r

F . 

(d) More generally, calculate the 2D-divergence and the 2D-curl of a radial vector field of the form 

ˆ
p

k
r

r
F  for any p. For what value(s) of p, if any, will the divergence be identically zero at all 

points? 

 


