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17. The Tacoma Narrows bridge

On July 1, 1940, a bridge spanning the Tacoma Narrows opened
to great celebration. It dramatically shortened the trip from Seattle
to the Kitsap Peninsula. It was an elegant suspension bridge, a mile
long (third longest in the US at the time) but just 39 feet across.
Through the summer and early fall, drivers noticed that it tended to
oscillate vertically, quite dramatically. It came to be known as “Gal-
loping Gertie.” “Motorists crossing the bridge sometimes experienced
“roller-coaster like” travel as they watched cars ahead almost disappear
vertically from sight, then reappear.” (Quoted from Billah-Scanlon.)

During the first fall storm, on November 7, 1940, with steady winds
above 40 mph, the bridge began to exhibit a different behavior. It
twisted, part of one edge rising while the opposing edge fell, and then
the reverse. At 10:00 AM the bridge was closed. The torsional os-
cillations continued to grow in amplitude, till, at just after 11:00, the
central span of the bridge collapsed and fell into the water below. One
car and a dog were lost.

Why did this collapse occur? Were the earlier oscillations a warning
sign? Many differential equations textbooks announce that this is an
example of resonance: the gusts of wind just happened to match the
natural frequency of the bridge.

The problem with this explanation is that the wind was not gusting—
certainly not at anything like the natural frequency of the bridge. This
explanation is worthless.

Structural engineers have studied this question in great detail. They
had determined already before the bridge collapsed that the vertical
oscillation was self-limiting, and not likely to lead to a problem. The
torsional oscillation was different. To model it, pick a portion of the
bridge far from the support towers. Let θ(t) denote its angle off of hor-
izontal, as a function of time. The torsional dynamics can be modeled
by a second order differential equation of the form

θ̈ + b0θ̇ + k0θ = F

where k0 is the square of the natural angular frequency of the torsional
oscillation and b0 is a damping term. The forcing term F depends upon
θ itself, and its derivatives, and on the wind velocity v. To a reasonable
approximation we can write

F = −k(v)θ − b(v)θ̇
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where k(v) and b(v) are functions of v which are determined by the
bridge characteristics.

This equation can be rewritten as

(1) θ̈ + (b0 + b(v))θ̇ + (k0 + k(v))θ = 0

In our situation, the wind velocity changes slowly relative to the time
scale of the oscillation, so this is a second order linear differential equa-
tion with constant coefficients in which the damping constant and the
spring constant depend upon the wind velocity.

It turns out that in the case of the Tacoma Narrows bridge the value
of k(v) is small relative to k0; the effect is to slightly alter the effective
natural frequency of torsional oscillation.

The function b(v) reflects mainly turbulence effects. The technical
term for this effect is flutter. The same mechanism makes flags flap
and snap in the wind. It turns out that the graph of b(v) has a shape
somewhat like the curve displayed in Figure 9.

Figure 9. b(v)

When |v| is small, b(v) > 0: the wind actually increases the damping
of the bridge; it becomes more stable. When |v| is somewhat larger,
b(v) = 0, and the wind has no damping effect. When |v| increases
still more, b(v) becomes negative and it starts to erode the damping
of the bridge, till, when it hits a certain critical value, it overwhelms
the intrinsic damping of the bridge. The result is anti-damping, a
negative effective damping constant. For the Tacoma Narrows Bridge,
the critical value of velocity was discovered, on that day in November,
1940, to be around 40 miles per hour.
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In more detail, solutions to (1) are linear combinations of functions
of the form ert where r is a root of the characteristic polynomial p(s) =
s2 + (b0 + b(v))s+ (k0 + k(v)):

r = −b0 + b(v)
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±
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As long as |b0 + b(v)| isn’t too big, the contents of the square root
will be negative: the roots have nonzero imaginary parts, indicating
oscillation. The real part of each root is a = −(b0 + b(v))/2, which is
positive if v is such that b(v) < −b0. If we write r = a± iω, the general
solution is

θ = Aeat cos(ωt− φ)

Its peaks grow in magnitude, exponentially.

This spells disaster. There are compensating influences which slow
down the rate of growth of the maxima, but in the end the system
will—and did—break down.
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