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14. Frequency response 

In Section 3 we discussed the frequency response of a first order LTI 
operator. In Section 10 we used the Exponential Response Formula 
to understand the response of an LTI operator to a sinusoidal input 
signal. Here we will study this in more detail in case the operator is 
of second order, and understand how the gain and phase lag vary with 
the driving frequency. 

A differential equation relates input signal to system response. What 
constitutes the “input signal” and what constitutes the “system re
sponse” are matters of convenience for the user, and are not deter
mined by the differential equation. We will illustrate this in a couple 
of examples. The case of sinusoidal input signal and system response 
are particularly important. The question is then: what is the ratio of 
amplitude of the system response to that of the input signal, and what 
is the phase lag of the system response relative to the input signal? 

We will carry this analysis out three times: first for two specific 
examples of mechanical (or electrical) systems, and then in general 
using the notation of the damping ratio. 

14.1. Driving through the spring. The Mathlet Amplitude and 
Phase: Second order I illustrates a spring/mass/dashpot system that 
is driven through the spring. Suppose that y denotes the displacement 
of the plunger at the top of the spring, and x(t) denotes the position of 
the mass, arranged so that x = y when the spring is unstretched and 
uncompressed. There are two forces acting on the mass: the spring 
exerts a force force given by k(y − x) (where k is the spring constant), 
and the dashpot exerts a force given by −bẋ (against the motion of the 
mass, with damping coefficient b). Newton’s law gives 

mẍ = k(y − x) − bẋ

or, putting the system on the left and the driving term on the right, 

(1) mẍ + bẋ + kx = ky . 

In this example it is natural to regard y, rather than ky, as the input 
signal, and the mass position x as the system response. 

Another system leading to the same equation is a series RLC cir
cuit, discussed in Section 8 and illustrated in the Mathlet Series RLC 
Circuit. We consider the impressed voltage as the input signal, and 
the voltage drop across the capacitor as the system response. The 
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Figure 6. Spring-driven system 

equation is then 

LV̈ 
C + RV̇C + (1/C)VC = (1/C)V 

We will favor the mechanical system notation, but the mathematics is 
exactly the same in both systems. 

When y is sinusoidal, say 

y = A cos(�t) , 

then (putting aside the possibility of resonance) we expect a sinusoidal 
solution, one of the form 

x = B cos(�t − π) 

The ratio of the amplitude of the system response to that of the input 
signal, B/A, is called the gain of the system. We think of the system 
as fixed, while the frequency � of the input signal can be varied, so the 
gain is a function of �, g(�). Similarly, the phase lag π is a function 
of �. The entire story of the steady state system response to sinusoidal 
input signals is encoded in those to functions of �, the gain and the 
phase lag. 

There is a systematic way to work out what g and π are. The 
equation (1) is the real part of a complex-valued differential equation: 

mz̈ + bż + kz = Akest 

with s = i�. The Exponential Response Formula gives the solution 
Ak st zp = e 
p(s) 
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where 
p(s) = ms 2 + bs + k 

(as long as p(s) = 0). ∈
Our choice of input signal and system response correspond in the 

complex equation to regarding Aest as the input signal and zp as the 
exponential system response. The transfer function is the ratio be
tween the two: 

k 
W (s) = 

p(s) 
so 

zp = W (s)Aest . 

Now take s = i�.	 The complex gain is 

k 
(2)	 W (i�) = . 

k − m�2 + ib� 
I claim that the polar form of the complex gain determines the gain g 
and the phase lag π as follows: 

W (i�) = ge −iζ 

To verify this, substitute this expression into the formula for zp — 

zp = g e −iζAei�t = gAei(�t−ζ) 

—and extract the real part, to get the sinusoidal solution to (1): 

yp = gA cos(�t − π) . 

The amplitude of the input signal, A, has been multiplied by the 
gain 

k 
(3)	 g(�) = W (i�) = �| | 

k2 + (b2 − 2mk)�2 + m2�4 

The phase lag of the system response, relative to the input signal, is 
π = −Arg(W (i�)). Since Arg(1/z) = −Arg(z), π is the argument of 
the denominator in (2). The tangent of the argument of a complex 
number is the ratio of the imaginary part by the real part, so 

b� 
tan π = 

k − m�2 

The Amplitude and Phase: Second order I Mathlet shows how 
the gain varies with �. Often there is a choice of frequency � for which 
the gain is maximal: this is “near resonance.” To compute what this 
frequency is, we can try to minimize the denominator in (3). That 
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minimum occurs when k2 + (b2 − 2mk)�2 + m2�4 is minimized, which 
occurs when � is either 0 or the resonant frequency 

k b2 

�r = 
2m 

− 
2m

When b = 0, this is the natural frequency �n = k/m and we have true 
resonance; the gain becomes infinite. As we increase b, the resonant 
frequency decreases, till when b = 

≤
2mk we find �r = 0. For b less 

than this, practical resonance occurs only for � = 0. 

14.2. Driving through the dashpot. Now suppose instead that we 
fix the top of the spring and drive the system by moving the bot
tom of the dashpot instead. This is illustrated in Amplitude and 
Phase: Second order II. 

Suppose that the position of the bottom of the dashpot is given by 
y(t), and again the mass is at x(t), arranged so that x = 0 when the 
spring is relaxed. Then the force on the mass is given by 

d 
mẍ = −kx + b (y − x)

dt
since the force exerted by a dashpot is supposed to be proportional to 
the speed of the piston moving through it. This can be rewritten 

(4) m¨ x + kx = b ̇x + b ̇ y . 

Dashpot 

Mass 

Spring 

x 

y 

Figure 7. Dashpot-driven system 

Again we will consider x as the system response, and the position 
of the back end of the dashpot, y, as the input signal. Note that the 
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derivative of the input signal (multiplied by b) occurs on the right hand 
side of the equation. Another system leading to the same mathematics 
is the series RLC circuit shown in the Mathlet Series RLC Circuit, 
in which the impressed voltage is the input variable and the voltage 
drop across the resistor is the system response. The equation is 

LV̈ 
R + RV̇R + (1/C)VR = RV̇

Here’s a frequency response analysis of this problem. We suppose 
that the input signal is sinusoidal: 

y = B cos(�t) . 

Then ẏ = −�B sin(�t) so our equation is 

(5) mẍ + bẋ + kx = −b�B sin(�t) . 

The periodic system response will be of the form 

xp = gB cos(�t − π) 

for some gain g and phase lag π, which we now determine by making 
a complex replacement. 

The right hand side of (5) involves the sine function, so one natural 
choice would be to regard it as the imaginary part of a complex equa
tion. This would work, but we should also keep in mind that the input 
signal is B cos(�t). For that reason, we will write (5) as the real part 
of a complex equation, using the identity Re (iei�t) = − sin(�t). The 
equation (5) is thus the real part of 

(6) mz̈ + bż + kz = bi�Bei�t .


and the complex input signal is Bei�t (since this has real part B cos(�t)).


The sinusoidal system response xp of (5) is the real part of the expo
nential system response zp of (6). The Exponential Response Formula 
gives 

zp = 
bi� 

p(i�) 
Bei�t 

where 
p(s) = ms 2 + bs + k 

is the characteristic polynomial. 

The complex gain is the complex number W (i�) by which you have 
to multiply the complex input signal to get the exponential system 
response. Comparing zp with Bei�t, we see that 

bi� 
W (i�) = . 

p(i�) 
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As usual, write 
W (i�) = ge −iζ 

so that 
zp = W (i�)Bei�t = gBei(�t−ζ) 

Thus 
xp = Re (zp) = gB cos(�t − π) 

—the amplitude of the sinusoidal system response is g times that of 
the input signal, and lags behind the input signal by π radians. 

To make this more explicit, let’s use the natural frequency �n = 
k/m. Then 

p(i�) = m(i�)2 + bi� + m�2 = m(�n 
2 − �2) + bi� , n 

so 
bi� 

W (i�) = . 
m(�n 

2 − �2) + bi� 

Thus the gain g(�) = |W (i�)| and the phase lag π = −Arg(W (i�)) 
are determined as the polar coordinates of the complex function of � 
given by W (i�). As � varies, W (i�) traces out a curve in the complex 
plane, shown by invoking the [Nyquist plot] in the applet. To under
stand this curve, divide numerator and denominator in the expression 
for W (i�) by bi�, and rearrange: 

� ⎨−1
i �n 

2 − �2 

W (i�) = 1 − 
b/m � 

. 

As � goes from 0 to ↓, (�2 − �2)/� goes from +↓ to −↓, so the n 
expression inside the brackets follows the vertical straight line in the 
complex plane with real part 1, moving upwards. As z follows this line, 
1/z follows a circle of radius 1/2 and center 1/2, traversed clockwise 
(exercise!). It crosses the real axis when � = �n. 

This circle is the “Nyquist plot.” It shows that the gain starts small, 
grows to a maximum value of 1 exactly when � = �n (in contrast to the 
spring-driven situation, where the resonant peak is not exactly at �n 

and can be either very large or non-existent depending on the strength 
of the damping), and then falls back to zero. Near resonance occurs at 
�r = �n. 

The Nyquist plot also shows that −π = Arg(W (i�)) moves from 
near ν/2 when � is small, through 0 when � = �n, to near −ν/2 when 
� is large. 

And it shows that these two effects are linked to each other. Thus a 
narrow resonant peak corresponds to a rapid sweep across the far edge 
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of the circle, which in turn corresponds to an abrupt phase transition 
from −π near ν/2 to −π near −ν/2. 

14.3. Second order frequency response using damping ratio. 
As explained in Section 13, it is useful to write a second order system 
with sinusoidal driving term as 

(7) ẍ + 2α�nẋ + �n
2 x = a cos(�t) . 

The constant �n is the “natural frequency” of the system and α is the 
“damping ratio.” In this abstract situation, we regard the full right 
hand side, a cos(�t), as the input signal, and x as the system response. 

The best path to the solution of (7) is to view it as the real part of 
the complex equation 

(8) z̈ + 2α�nż + �n
2 z = ae i�t . 

The Exponential Response Formula of Section 10 tells us that unless 
α = 0 and � = �n (in which case the equation exhibits resonance, and 
has no periodic solutions), this has the particular solution 

i�t e
(9) zp = a 

p(i�) 

where p(s) = s2 + 2α�ns + �n 
2 is the characteristic polynomial of the 

system. In Section 10 we wrote W (s) = 1/p(s), so this solution can be 
written 

zp = aW (i�)e i�t . 
The complex valued function of � given by W (i�) is the complex 
gain. We will see now how, for fixed �, this function contains exactly 
what is needed to write down a sinusoidal solution to (7). 

As in Section 10 we can go directly to the expression in terms of 
amplitude and phase lag for the particular solution to (7) given by the 
real part of zp as follows. Write the polar expression (as in Section 6) 
for the complex gain as 

1 
(10) W (i�) = = ge −iζ . 

p(i�) 

so that 
g(�) = W (i�) , π(�) = Arg(W (i�))| |

Then 
zp = ag e i(�t−ζ), xp = ag cos(�t − π), 

The particular solution xp is the only periodic solution to (7), and, 
assuming α > 0, any other solution differs from it by a transient. This 
solution is therefore the most important one; it is the “steady state” 
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solution. It is sinusoidal, and hence determined by just a few parame
ters: its circular frequency, which is the circular frequency of the input 
signal; its amplitude, which is g times the amplitude a of the input 
signal; and its phase lag π relative to the input signal. 

We want to understand how g and π depend upon the driving fre
quency �. The gain is given by 

1 1 
(11)	 g(�) = = � . |p(i�)| (�n 

2 − �2)2 + 4α2�2 �2 
n

Figure 8 shows the graphs of gain against the circular frequency 
of the signal for �n = 1 and several values of the damping ratio α 
(namely α = 1/(4

≤
2), 1/4, 1/(2

≤
2), 1/2, 1/

≤
2, 1, 

≤
2, 2.) As you can 

see, the gain may achieve a maximum. This occurs when the square 
of the denominator in (11) is minimal, and we can discover where this 
is by differentiating with respect to � and setting the result equal to 
zero: 

d �	 � 
(12) (�n 

2 − �2)2 + 4α2�2�2 = −2(�n 
2 − �2)2� + 8α2�2 �, 

d� n n

and this becomes zero when � equals the resonant frequency 

(13)	 �r = �n 1 − 2α2 . 

When α = 0 the gain becomes infinite at � = �n: this is true res
onance. As α increases from zero, the maximal gain of the system 
occurs at smaller and smaller frequencies, till when α = 1/

≤
2 the max

imum occurs at � = 0. For still larger values of α, the only maximum 
in the gain curve occurs at � = 0. When � takes on a value at which 
the gain is a local maximum we have practical resonance. 

We also have the phase lag to consider: the periodic solution to (7) 
is 

xp = ga cos(�t − π). 

Returning to (10), π is given by the argument of the complex number 

p(i�) = (�n 
2 − �2) + 2iα�n� . 

This is the angle counterclockwise from the positive x axis of the ray 
through the point (�2 − �2 , 2α�n�). Since α and � are nonnegative, n 
this point is always in the upper half plane, and 0 π ν. The phase → →
response graphs for �n = 1 and several values of α are shown in the 
second figure. 

When � = 0, there is no phase lag, and when � is small, π is approx
imately 2α�/�n. π = ν/2 when � = �n, independent of the damping 
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rato α: when the signal is tuned to the natural frequency of the system, 
the phase lag is ν/2, which is to say that the time lag is one-quarter of 
a period. As � gets large, the phase lag tends towards ν: strange as it 
may seem, the sign of the system response tends to be opposite to the 
sign of the signal. 

Engineers typically have to deal with a very wide range of frequen
cies. In order to accommodate this, and to show the behavior of the 
frequency response more clearly, they tend to plot log10 1/p(i�) and| |
the argument of 1/p(i�) against log10 �. These are the so-called Bode 
plots. 

The expression 1/p(i�), as a complex-valued function of �, contains 
complete information about the system response to periodic input sig
nals. If you let � run from −↓ to you get a curve in the complex ↓
plane called the Nyquist plot. In cases that concern us we may re
strict attention to the portion parametrized by � > 0. For one thing, 
the characteristic polynomial p(s) has real coefficients, which means 
that p(−i�) = p(i�) = p(i�) and so 1/p(−i�) is the complex conju
gate of 1/p(i�). The curve parametrized by � < 0 is thus the reflection 
of the curve parametrized by � > 0 across the real axis. 
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