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Concourse 18.03 – Lecture #8 
Today we continue with some of the details of 2nd order (and higher) linear ODE’s. We will focus primarily on 
the constant coefficient case in which we can easily construct exponential solutions from the roots of the 
characteristic equation and then combine these solutions via superposition. Linear algebra idea regarding 
spanning sets and linear independence will be introduced as needed, and we’ll define the Wronskian as a tool 
for checking independence of solutions. We’ll apply these methods to the study of mass-spring-dashpot 
systems. 

Higher order linear ordinary differential equations with constant coefficients 
In general, an nth order linear ordinary differential equation is a differential equation of the form 

1
11 1 0( ) ( ) ( ) ( ) ( )n n

n nn
d x d x dx
dt dtdtp t p t p t x t q t−

−−+ + + + = , where 1 1 0( ), , ( ), ( ), ( )np t p t p t q t−   are functions of the 

independent variable t. We solve this by (1) finding an expression for all homogeneous solutions ( )hx t , 
(2) using some productive method to find one particular solution ( )px t  to the inhomogeneous equation, and 
then (3) adding these to get the general solution ( ) ( ) ( )h px t x t x t= + . If we are solving an initial value problem, 
we would then use the initial conditions to determine any unknown constants in the expression for ( )x t . 

One case of special interest is the case where all of the coefficient functions ( )i ip t a=  are constant. In this case 

the differential equation simplifies to 1
11 1 0 ( ) ( )n n

n nn
d x d x dx
dt dtdta a a x t q t−

−−+ + + + = . If we write d
dtD = , 

2

2
2 d

dtD D D= = , etc. and I Identity= , we can express this ODE as 1
1 1 0 ( ) ( )n n

nD a D a D a I x t q t−
− + + + + =  . 

Note that this linear operator 1
1 1 0

n n
nT D a D a D a I−
−= + + + +  has a very polynomial-like quality. It has a 

corresponding characteristic polynomial 1
1 1 0( ) n n

np s s a s a s a−
−= + + + +  that permits us to formally express 

1
1 1 0 ( )n n

nT D a D a D a I p D−
−= + + + + = . We will often write such an ODE in the form [ ]( ) ( ) ( )p D x t q t= . 

If we seek exponential solutions of the form rte  for the homogeneous equation 
1
11 1 0 ( ) 0n n

n nn
d x d x dx
dt dtdta a a x t−

−−+ + + + = , we calculate rtdx
dt re= , 2

2
2 rtd x

dt r e= , …, n

n
n rtd x

dt r e= , and substitution 

gives 1 2 1 2
1 2 1 0 1 2 1 0( ) ( ) 0n rt n rt rt rt rt n n rt rt

n nr e a r e a r e a re a e r a r a r a r a e p r e− −
− −+ + + + + = + + + + + = =  . This 

yields a solution only when the characteristic polynomial 1 2
1 2 1 0( ) 0n n

np r r a r a r a r a−
−= + + + + + = . 

So for any root ir  of the characteristic polynomial, ir te  will be a homogeneous solution. The Fundamental 
Theorem of Algebra guarantees (in principle) that we can factor ( )p r  into a product of linear factors and 
irreducible quadratic factors. As long as there are no repeated roots, and since we can use the quadratic formula 
to produce a complex conjugate pair of roots for each irreducible quadratic factor, we will be able to produce n 
distinct roots and a corresponding set of exponential solutions { }1 2, , , nr tr t r te e e . In the case of repeated roots, 
this will yield fewer solutions of this form. 

By linearity, any function of the form 1 2
1 2( ) nr tr t r t

h nx t c e c e c e= + + +  will solve the homogeneous equation. 

Question: Does this yield all solutions? 

A second order example should explain why the answer is YES. Suppose we wish to solve the ODE 
3 2 0x x x+ + =  . Any exponential solution rte  would give 2( ) 3 2 ( 2)( 1) 0p r r r r r= + + = + + = . Its characteristic 

roots are 1 2r = −  and 2 1r = − , and these yield solutions 2te−  and te− . Why are ALL homogeneous solutions of 
the form 2

1 2( ) t tx t c e c e− −= + ? 
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If we write the differential equation in terms of linear differential operators, we might write this as 
[ ] [ ]2 ( ) 0D I D I x t+ + = , i.e. as a composition of two 1st order linear differential operators. If we let 

[ ] ( ) ( )D I x t y t+ = , this gives two 1st order equations: ( )dx
dt x y t+ =  and 2 0dy

dt y+ = . The latter equation is 

easily solved to give all solutions 2
1( ) ty t c e−=  where 1c  is a constant. We then substitute this into the former 

equation to get 2
1

tdx
dt x c e−+ = . This is an inhomogeneous equation with integrating factor te . Multiplication by 

this gives 1( )t t t tdx d
dt dte e x e x c e−+ = = , so 1 2( )t te x t c e c−= − + . Finally, multiplying both sides by te−  gives 

2
1 2( ) t tx t c e c e− −= − + . Except for the sign switch on the first arbitrary constant, this demonstrates that all 

homogeneous solutions are of the form 2
1 2( ) t tx t c e c e− −= +  for some choices of the constants 1c  and 2c , i.e. all 

linear combinations of the two basic exponential solutions that we found. 

It should be clear that this approach can be generalized to the nth order case as long as the characteristic 
polynomial can be factored into distinct linear factors. (We write the differential equation as a composition of n 
1st order linear operators and iterate the above process.) This even works in the case of complex roots as long as 
they are not repeated. The more difficult case is when there are repeated roots of the characteristic polynomial, 
but, as we’ll soon see, this case also yields a relatively simple solution. 

In Linear Algebra terms, we say that { }1 2, , , nr tr t r te e e  span all solutions in the above case. It is a valid question 
to ask whether all of these solutions are necessary, i.e. if we could span all solutions with a subset of these 
exponential solutions. In Linear Algebra terms, we would ask: Are these solutions are linearly independent? 
In other words, is it possible to express any of these solutions as a linear combination of the other solutions? 

Definition: A set of functions { }1 2, , , nf f f  is called linearly independent if the equation 

1 1 2 2( ) ( ) ( ) 0n nc f t c f t c f t+ + + =  (for all t) implies that 1 2 0nc c c= = = = . 

When seeking solutions to an nth order linear differential equation of the form [ ]( ) ( ) ( )p D x t q t= , we 
actually want more than this. We want to guarantee a unique solution to any well-posed initial value problem 
with initial conditions given for the function and its derivatives up to order ( 1)n − , i.e. 0 0( )x t x= , 0 0( )x t x=  , … 

( 1) ( 1)
0 0( )n nx t x− −= . If ( )px t  is one particular solution and if we can express all homogeneous solutions as 

1 1 2 2( ) ( ) ( ) ( )h n nx t c f t c f t c f t= + + + ,then we would have the general solution 

1 1 2 2( ) ( ) ( ) ( ) ( ) ( ) ( )h p n n px t x t x t c f t c f t c f t x t= + = + + + +  and we would then also want that: 

1 1 0 2 2 0 0 0 00 0 0

0 0 0 1 1 0 2 2 0 0 0 0

( 1) ( 1) ( 1) ( 1) (
0 0 0 1 1 0 2 2

( ) ( ) ( ) ( ) ( )( ) ( ) ( )
( ) ( ) ( ) ( ) ( ) ( ) ( ) ( )

( ) ( ) ( ) ( )

n n ph p

h p n n p

n n n n n
h p

c f t c f t c f t x t x tx t x t x t
x t x t x t c f t c f t c f t x t x t

x t x t x t c f t c f− − − − −

+ + + + =+ = 
  ′ ′ ′+ =  + + + + =⇒ 
 

+ =  + 



  

 






1) ( 1) ( 1) ( 1)
0 0 0 0( ) ( ) ( ) ( )n n n

n n pt c f t x t x t− − −

 
 
 
 
 
 + + + = 

 

To guarantee a unique solution to the initial value problem, we would have to produce unique values for 
{ }1 2, , , nc c c . We can rewrite the above system of linear equations in the form: 

1 0 1 2 0 2 0 0 0

1 0 1 2 0 2 0 0 0

( 1) ( 1) ( 1) ( 1) ( 1)
1 0 1 2 0 2 0 0 0

( ) ( ) ( ) ( ) ( )

( ) ( ) ( ) ( ) ( )

( ) ( ) ( ) ( ) ( )

n n p

n n p

n n n n n
n n p

f t c f t c f t c x t x t

f t c f t c f t c x t x t

f t c f t c f t c x t x t− − − − −

+ + + = − 
 ′ ′ ′ + + + = −
 
 
 + + + = − 



 






 

In terms of matrices, we can express these as: 
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0 01 0 2 0 0 1 1

0 02 21 0 2 0 0

( 1) ( 1)( 1) ( 1) ( 1)
0 01 0 2 0 0

( ) ( )( ) ( ) ( )
( ) ( )( ) ( ) ( ) unique 

( ) ( )( ) ( ) ( )

pn

pn

n nn n n
n npn

x t x tf t f t f t c c
x t x tc cf t f t f t

c cx t x tf t f t f t − −− − −

−      
      −′ ′ ′    = ⇒   
      
      −      



 



 

   



 

Two fundamental results in linear algebra say that this will only be the case when the above matrix is invertible, 
and this will only be the case when its determinant is never equal to 0. 

Definition: 

1 2 1 2

1 2 1 2

( 1) ( 1) ( 1) ( 1) ( 1) ( 1)
1 2 1 2

( ) ( ) ( ) ( ) ( ) ( )
( ) ( ) ( ) ( ) ( ) ( )det ( )

( ) ( ) ( ) ( ) ( ) ( )

n n

n n

n n n n n n
n n

f t f t f t f t f t f t
f t f t f t f t f t f t W t

f t f t f t f t f t f t− − − − − −

 
 ′ ′ ′ ′ ′ ′  = =
 
  

 

 

       

 

 

is called the Wronskian determinant. 

Corollary: If the Wronskian determinant is never 0, the given ODE will yield unique solutions in the form 
1 1 2 2( ) ( ) ( ) ( ) ( ) ( ) ( )h p n n px t x t x t c f t c f t c f t x t= + = + + + +  for any given initial conditions given for the function 

and its derivatives up to order ( 1)n − . 

Though not routinely used to ensure a linearly independent set of solutions, (there are arguments with less 
tedious calculations that can be made), the Wronskian is one tool for ensuring that a set of homogeneous 
solutions to a linear ODE is valid for uniquely expressing all solutions to a given initial value problem. 

Example: Solve the initial value problem 5 4 3sin 2x x x t+ + =   with initial conditions (0) 3x = , (0) 2x = . 

Solution: We first solve the homogeneous equation 5 4 0x x x+ + =  . Its characteristic polynomial is 
2( ) 5 4 ( 4)( 1)p r r r r r= + + = + +  and this yields two distinct roots 4r = −  and 1r = − . The corresponding 

exponential solutions are 4te−  and te− . We can check that these are, in fact, linearly independent by calculating 

the Wronskian determinant: 
4

5 5 5
4 4 3 0

4

t t
t t t

t t
e e e e e

e e

− −
− − −

− − = − + = ≠
− −

. From our previous arguments, we know 

that all homogeneous solutions are of the form 4
1 2( ) t t

hx t c e c e− −= + . 

Next, we seek a particular solution. There are at least two good ways to do this. We could do “complex 
replacement” and simultaneously solve 5 4 3cos 2x x x t+ + =   and 5 4 3sin 2y y y t+ + =   by solving the 
inhomogeneous equation 25 4 3 itz z z e+ + =   and then taking the “imaginary” part. It is perhaps easier to solve 
using undetermined coefficients. 

If we let cos 2 sin 2x a t b t= + , we get 
cos 2 sin 2

2 cos 2 2 sin 2 5 4 (10 )cos 2 ( 10 )sin 2
4 cos 2 4 sin 2

x a t b t
x b t a t x x x b t a t
x a t b t

= +  = − ⇒ + + = + − 
 = − − 

  



 

We must therefore have 10 0b =  and 10 3a− = , so 3
10a = −  and 0b = . So 3

10( ) cos 2px t t= − . 

The general solution is therefore 4
1 2

3
10( ) cos 2t tx t c e c e t− −= + − , and we have 4

1 2
3
5( ) 4 cos 2t tx t c e c e t− −= − − + . 

If we substitute the initial conditions (0) 3x = , (0) 2x = , we have: 

533 33 33
1 2 1 2 301 110 10 10

76
2 21 2 1 2 15

(0) 3 1 1
4 1(0) 4 2 4 2 2

x c c c c c c
c cx c c c c

−= + − = + =           ⇒ ⇒ = ⇒ =          − −= − − = − − =            

. 
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We certainly don’t have to use matrices to solve these two equations, but it’s worth noting that the nonvanishing 
of the Wronskian determinant is precisely why there is a unique solution for these constants. The unique 
solution to this initial value problem is therefore 453 76

30 15
3

10( ) cos 2t tx t e e t− −= − + − . 

Note: In this example, the exponential terms are transients (they decay quickly) and the “steady state” solution 
is the particular solution that we calculated. 

Mass-Spring-Dashpot systems 
Of particular interest to us (for a variety of reasons) are mass-spring-dashpot systems in which a spring is 
governed by Hooke’s Law but also subject to friction that is proportional to the velocity. [A picture was drawn 
in class illustrating a spring with an attached mass and the friction supplied by a piston (dashpot).] The simplest 
case is where this system is confined with the spring attached to one fixed wall, the dashpot on the other side of 
the mass attached to another fixed wall, and the mass moving relative to its equilibrium position. In this case, 
we would express the force acting on the mass as F kx cv= − −  where v x=   and F ma mx= =  . This gives the 
system 0mx cx kx+ + =   or 0c k

m mx x x+ + =  . 

We could also imagine a system that is “driven” by moving either the fixed end of the spring or by moving the 
fixed end of the dashpot. If we incorporate this additional acceleration, the resulting system would be governed 
by an inhomogeneous ODE of the form ( )c k

m mx x x q t+ + =  . 

Note: We get similar equations in the case of an electric circuit with inductance (L), resistance (R), and 
capacitance (C), i.e. and LRC circuit. 

Spring only case 
The simplest case is a pure spring with no friction and no external driving force. In this case, the differential 
equation governing the motion would be simply 0k

mx x+ = . In anticipation of what will follow, it’s useful to 

let 2 k
mω =  or k

mω = . This gives the differential equation 2 0x xω+ = . It’s characteristic polynomial is 
2 2( ) 0p r r r iω ω= + = ⇒ = ± . So all solutions to this homogeneous equation can be expressed as the span of 

{ },i t i te eω ω− , i.e. in the form 1 2( ) i t i tx t c e c eω ω−= +  where 1 2,c c  are complex constants. We would, of course, prefer 
to express solutions as real-valued functions. Using Euler’s Formula, we could rewrite the solutions as 

1 2 1 2 1 2( ) (cos sin ) (cos sin ) ( ) cos ( )sinx t c t i t c t i t c c t i c c tω ω ω ω ω ω= + + − = + + −  and then hope that any given 
initial condition will produce real coefficients (they will). Another way to look at this is to note that since 

cos sini te t i tω ω ω= +  and cos sini te t i tω ω ω− = −  and we can also solve for 2cos i t i te et ω ωω −+=  and 

2sin i t i te e
it ω ωω −−= , it must be the case that { } { }Span , Span cos ,sini t i te e t tω ω ω ω− = . That is, all solutions must be 

of the form ( ) cos sinx t a t b tω ω= + . We also have the option of expressing this as ( ) cos( )x t A tω φ= −  where 
2 2A a b= +  and tan b

aφ = . 

Note: If we felt the urge to inquire whether the set { },i t i te eω ω−  or the set { }cos ,sint tω ω  were linearly 

independent solutions, the corresponding Wronskians would give either 2 0
i t i t

i t i t
e e i

i e i e

ω ω

ω ω ω
ω ω

−

− = − ≠
−

 or 

2 2cos sin (cos sin ) 0sin cos
t t t tt t

ω ω ω ω ω ωω ω ω ω = + = ≠
−

. They both provide a linearly independent spanning set for 

the solutions, i.e. a basis for the solutions (in linear algebra terms). 
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In the next lecture we’ll look at the cases where there is friction and classify these as underdamped, 
overdamped, or critically damped. The underdamped case is characterized by decaying oscillatory solutions. 
The overdamped case is characterized by exponential decay. The critically damped case will be most interesting 
in terms of the concepts linear independence and spanning sets we just introduced. After that we’ll move on to 
driven systems. 

Notes by Robert Winters 


