
 1

Concourse 18.03 – Lecture #6-7 

This week we’ll further explore the use of complex-valued functions as a tool for finding particular solutions to 
any linear ODE of the form ( )T f g  where the input ( )g t  is any function of the form ( ) atg t ke  or 

( ) cosatg t ke bt  or ( ) sinatg t ke bt  for various choices of the constants , ,k a b . We’ll also take a step back 

and look again at autonomous systems, i.e. ODEs of the form ( )dP
dt F P , by considering the phase line, the 

corresponding slope field, and by understanding the idea of stability in the vicinity of any equilibrium. 

(First order) Linear response to exponential, sinusoidal inputs 

Motivating example: Heating/cooling can be modeled by the ODE ( )dx
dt k y x   where ( )x t  measures the 

temperature inside some box, room, or other space, and where the outside temperature varies according to some 

prescribed function ( )y t , with 0k   the coupling constant. This can also be written as dx
dt kx ky  , so this 

can be thought of as a 1st order linear inhomogeneous differential equation with input ( ) ( )g t k y t . 

Imagine a situation where the initial inside temperature is 0(0)x x  and where the outside temperature varies 

sinusoidally according to ( ) cosy t A t . Here   is the frequency and the period is 2T 
 . 

What do we expect will happen? 
(a) The temperature variation (amplitude) inside will likely not be as great as the variation outside. 

(b) Any initial temperature inside will be transient – as the system eventually takes over. 

(c) The change in temperature inside will likely lag or be out of phase with the outside temperature (wine cellar 
effect) 

(d) If the frequency   is very small (slow change), we might expect the inside temperature to “keep up” with 
the outside temperature. 

(e) If   is very large (rapid oscillation of temperature), we expect that the inside temperature will have very 
small variation around the average temperature (which is 0 in this case). 

To solve the given linear differential equation, we start by finding the homogeneous solutions. We rewrite 

0dx
dt kx   as dx

dt kx   and get ( ) kt
hx t ce . For a particular solution, we could use undetermined coefficients 

and a solution of the form ( ) cos sinpx t a t b t   , but based on our expectations we might alternatively seek 

a solution of the form ( ) cos( )px t gA t   , where g as the ratio of response amplitude to input amplitude A. 

[This is equivalent to a solution of the form ( ) cos sinpx t a t b t   .] This ratio g is called the gain. We then 

substitute ( ) cos( )px t gA t    into the original inhomogeneous ODE to determine g and  . 

We calculate sin( ) cos( ) cosdx
dt kx g A t kgA t kA t            . To facilitate the determination of the 

unknowns g and  , we rewrite cos cos( ) cos cos( ) sin sin( )kA t kA t kA t kA t                . So 

sin( ) cos( ) cos cos( ) sin sin( )dx
dt kx g A t kgA t kA t kA t                    . Equating coefficients 

gives sin sing A kA g k        , and cos coskgA kA g    . So tan k   

This is most easily pictured with a right triangle as shown. 

From this we see that tan k
   and 
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k
k

g


 . 

So, the particular solution is ( ) cos( )px t gA t    with these values for the 

gain g and the phase angle  , and the general solution is therefore 

( ) cos( )ktx t ce gA t    . Does this match with our expectations? 
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Notes: (1) When the frequency   is small (slow change), the gain g will be close to 1 100% , i.e. the inside 
temperature will vary almost as much as the outside temperature, and the lag will be close to 0 
(temperature inside will “keep up” with the outside temperature change). 

(2) When the frequency   is large (rapid change), the gain g will be close to 0, so the inside 
temperature will have very small variation around the average temperature of 0. It will also be the 
case that the lag will approach 90°, but this will likely go unnoticed due to the minimal temperature 
variation. 

(3) The initial temperature inside will determine the constant c in the exponentially decaying (transient) 
term, and this term will become negligible over time. 

Another approach to finding a solution is to introduce complex-valued functions. For this we’ll actually be 

solving two differential equations simultaneously. In addition to the ODE cosdx
dt kx kA t  , let’s also 

consider the ODE sindy
dt ky kA t  . If we let ( ) ( ) ( )z t x t i y t  , then dydz dx

dt dt dti  , so we’ll have 

        (cos sin ) i tdy dydz dx dx
dt dt dt dt dtkz i k x iy kx i ky kA t i t kAe              , using Euler’s formula. 

This gives the complex ODE i tdz
dt kz kAe    where now the right-hand-side is now an exponential function. 

We will soon develop a handy tool called the Exponential Response Formula (ERF) for handling similar linear 
ODE’s of any order, but for now we can solve this directly using undetermined coefficients. The homogeneous 
solutions will again be of the form ( ) kt

hz t ce , but we must understand the constant c to be an arbitrary 

complex constant, i.e. 1 2c c ic  . The homogeneous solutions may this be written as 1 2( ) kt kt
hz t c e ic e   . 

For a particular solution, we try ( ) i t
pz t GAe   where G is a complex constant called the complex gain. 

Differentiation and substitution into the ODE gives ( )i t i t i t i tdz
dt kz GAi e kGAe GA k i e kAe          , so 

we must have ( )G k i k   or k
k iG  . If we refer to the triangle from before and write in polar form 

2 2 ik i k e     , we’ll have 
2 2 i

k
k e

G 
 , and the particular solution will be 

2 22 2

( )( ) i t i t
p i

kA kA
kk e

z t e e  
 




  . Note that 

2 22 2 i
k k

kk e
G g  

    is the gain, and we can write 

2 2 2 2 2 2

( )( ) cos( ) sin( )i t
p

kA kA kA
k k k

z t e t i t 

  
   

  
             

. 

So we have 
2 2 2 21 2( ) cos( ) sin( ) ( ) ( )kt ktkA kA

k k
z t c e t i c e t x t i y t

 
    

 
                

 as the general 

solution. This individually gives solutions 
2 21( ) cos( )kt kA

k
x t c e t


 


    to the first ODE and 

2 22( ) sin( )kt kA
k

y t c e t


 


    to the second ODE, and the solution to the first ODE is consistent with what 

we derived previously. Here 
2 2
k

k
g


  is the gain and tan k

   determines the lag. This method involving 

complex solutions is especially appropriate when considering gain and lag in the solution of higher order linear 
ODEs when the inhomogeneity is of the form ( ) cosatq t ke t  or ( ) sinatq t ke t . 

Engineers often plot the gain and lag as functions of the input frequency  . The plots of  log ( )g   vs. log( )  

and ( )   vs. log( )  are known as Bode plots. They measure the response to a given signal. 
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Autonomous differential equations 

Definition: An first order autonomous differential equation is an ODE of the form ( )dx
dt F x , i.e. an ODE 

where the rate dx
dt  depends only on the value of x. If t represents time, this means that the rate of change is time-

independent. 
If we draw the slope field corresponding to an autonomous equation, the slopes will be constant horizontally but 
may vary vertically. Two familiar autonomous ODE’s are: 

(a) Natural (unrestricted) growth:   dx
dt kx     (exponential growth for 0k  , exponential decay for 0k  ) 

(b) Logistic growth:   (1 )dx x
Ldt kx      (L is the “carrying capacity”, the relative growth rate 1 (1 )dx x

x Ldt k   

decays linearly with increasing population with rate 0 when x L  and negative growth for x L ) 

  
Natural (exponential) growth:  dx

dt kx  Logistic growth:  (1 )dx x
Ldt kx   

 
Even if we can solve an autonomous differential equation analytically to get a formula for the solutions, it is 
often more important to understand the solutions qualitatively. 

Definition: Given an autonomous differential equation ( )dx
dt F x , we call a point 0x  an equilibrium if 

0( ) 0F x  . The constant solution 0( )x t x  will be a solution to the differential equation with initial condition 

0(0)x x . 

As we can see in the illustrations above, some equilibria are such that nearby solutions converge toward the 
equilibrium and other equilibria are such that nearby solutions diverge away from the equilibrium. 

Definition: If 0x  is an equilibrium of ( )dx
dt F x  and if for all initial conditions in some interval around 0x  the 

solutions ( )x t  are such that   0lim ( )
t

x t x


 , then we call 0x  a stable equilibrium. Otherwise we call it an 

unstable equilibrium. However, we usually consider an unstable equilibrium to be such that nearby solutions 
diverge away from the equilibrium. If we draw only the x-axis and indicate equilibria as points with arrows 
indicating the direction of nearby solutions, we refer to this as the phase line. 

There’s a simple derivative test for distinguishing stable and unstable equilibria. Suppose 0x  is an equilibrium 

for the differential equation ( )dx
dt F x  and that ( )F x  is differentiable at 0x . We learned in Calculus about 

linear approximation, and in the vicinity of 0x  we’ll have 0 0 0 0 0( ) ( ) ( )( ) ( )( )F x F x F x x x F x x x       
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because 0( ) 0F x  . We also know that if we let 0( )u x x  , then 0( )du d dx
dt dt dtx x   , so we’ll have 

0 0 0( )( ) ( )du
dt F x x x F x u    . The differential equation 0( )du

dt F x u  yields growth (away from 0u   or 

0x x ) if 0( ) 0F x  , and decay (toward 0u   or 0x x ) if 0( ) 0F x  . This enables us to distinguish unstable 

and stable equilibria. In the case where 0( ) 0F x  , we’ll have to look at the slope field or use similar analysis. 

Note: It may happen that on one side of an equilibrium nearby solutions converge toward the equilibrium but on 
the other side they diverge away from the equilibrium. In this case we would call the equilibrium semistable. 

Example: Determine the equilibria of the differential equation 2( 2)dx
dt x x   and classify their stability. 

Solution: The equilibria will be where 2( ) ( 2) 0F x x x   , i.e. at 0x   and at 2x  . The derivative gives 
( ) ( 2)(3 2)F x x x    . We have (0) 4 0F     so this equilibrium will be unstable. On the other hand, 
(2) 0F    so we must use other means to determine the stability of this equilibrium. Note that ( ) 0F x   for 

2x   (repelling) and ( ) 0F x   for 2x   (attracting), so this equilibrium will be semistable. 

 
Analytic solution of the logistic equation 

The logistic equation is (1 )dx x
Ldt kx   where 0k   is constant. It has an unstable equilibrium at 0x   and a 

stable equilibrium at x L  (the carrying capacity). Suppose 0(0)x x  is the initial condition. We can write 

(1 )L
x

dx
x kdt   and (1 )L

x
dx

x kdt kt C     . The integral on the left is done using partial fractions. Specifically,  

1
(1 ) ( ) ( )

L
x

L A B
x L xx x L x L A L x Bx        . Choosing 0x   gives AL L  or 1A  . Choosing x L  

gives BL L  or 1B  . So  1 1 1 1 1
(1 ) (1 ) ln ln ln

L L
x x

dx x
x xL x L x L xx x dx x L x             . 

So ln (1 ) ( )
1

kt
kt kt kt kt

kt
x x

L x L x
LAe

kt C Ae x LAe Axe x Ae x t
Ae            


. 

The initial condition gives 0
0 0 0 0 0

0

(0) ( )
1

xLA
x x LA x Ax A L x x A

A L x
         

 
. 
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So 

0

0 0 0

0 0 0 00

0

( )
( ) ( )

1

kt

kt

kt kt
kt

x
L e

L x Lx e Lx
x t

L x x e x L x ex
e

L x



 
    

    
   

. So the solution is 0

0 0

( )
( ) kt

Lx
x t

x L x e
 

. 

Note, in particular, that   0

0 0

lim ( ) lim
( ) ktt t

Lx
x t L

x L x e 

 
    

, as expected. 

Example: Suppose population growth is governed by the logistic differential equation (1 )dx x
Ldt kx   with 1k   

and carrying capacity 1000L  . Further suppose that the initial population is (0) 100x  . The analytic solution 

will then be 
100000 1000

( )
100 900 1 9t t

x t
e e  

 
. If we would like to know when the population will reach 500, we 

have 
1000

( ) 500 1000 500 4500 9 ln 9 2.197
1 9

t t
t

x t e e t
e


         


. 

If we ask when the population will reach 990, we have 
1000

( ) 990 1000 990 8910 891 ln891 6.792
1 9

t t
t

x t e e t
e


         


. 

We occupied the remainder of Lecture #7 with questions from the Practice Exam. 

Notes by Robert Winters 


