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Concourse 18.03 – Lecture #5 
Today’s topics include another method for finding particular solutions for linear ODEs – variation of 
parameters – and the introduction of complex numbers and related facts to reformulate some of the methods 
involving exponential and sinusoidal inputs. 

Methods we’ve seen so far: 
Separation of variables 
Integrating factors for solving 1st order linear ODEs 
Linearity – homogeneous and particular solutions for linear ODEs 
Method of undetermined coefficients for finding particular solutions to linear ODEs 

Variation of parameters 
Another useful method for finding a particular solution to a linear ODE is the take the homogeneous solutions 
that you’ve presumably already found and “vary the parameters.” This method can be formulated for nth order 
linear ODEs (and we’ll do that eventually), but for now we’ll formulate the method for 1st order linear ODEs. 

Suppose we are trying to solve the linear ODE ( ) ( )dy
dx p x y q x+ ⋅ =  where ( ), ( )p x q x  are functions of the 

independent variable x, and that we have already solved the homogeneous equation ( ) 0dy
dx p x y+ ⋅ =  to find the 

homogeneous solutions ( )hy x . This equation is separable and can, in principle, always be solved to give 
( )

( )
p x dx

hy x Ae−∫= . The basic idea is to treat the scalar A  as variable. 

If we write ( ) ( ) ( )hy x v x y x=  where ( )hy x  as the basic homogeneous solution, we can then calculate that 

( ) ( ) ( )h
h

dy dy
dx dxv x v x y x′= +  and substitute into the ODE to get: 

( )( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( )h h
h h h h

dy dy
dx dxv x v x y x p x v x y x v x p x y x v x y x q x′ ′+ + = + + =  

Note that since ( )hy x  is a solution to the homogeneous equation, the expression in parentheses vanishes. So the 

resulting equation becomes ( ) ( ) ( )hv x y x q x′ = . This is, in principle, easily solved by writing ( )
( )( )

h

q x
y xv x′ =  and 

integrating to get ( )
( )( )

h

q x
y xv x dx= ∫ . We then have the particular solution ( ) ( ) ( )p hy x v x y x= . 

Example #1: Find the general solution of the 1st order linear ODE 5 7dy
xdx y x+ = . 

Solution: The homogeneous equation 5 0dy
xdx y+ =  gives: 

55 5 5 ln 5ln ( )h
dy dy dy

x y x y xdx y dx dx y x C y x Ax−= − ⇒ = − ⇒ = − ⇒ = − + ⇒ =∫ ∫  

So we take 5
5 1( )h xy x x−= =  for the purpose of doing variation of parameters to find a particular solution. With 

( ) 7q x x= , the method as described above gives 5
6 77( ) 7x

xv x dx x dx x−= = =∫ ∫ . [Note that we don’t add an 
arbitrary constant because we’re only trying to find one particular solution.] 

So 7 5 2( ) ( ) ( )p hy x v x y x x x x−= = ⋅ = . The general solution is therefore 5 2( )y x Ax x−= +  where A is an arbitrary 
constant. 
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Example #2 (sinusoidal input): Find the general solution to the ODE 2 cos3dx
dt x t+ = . [This is the same 

problem we solved in the previous lecture.] 

Solution: Last time we solved the homogeneous ODE to get 2( ) t
hx t ce−= . If we use 2( ) t

hx t e−=  and 

( ) cos3q t t=  for the variation of parameters, we get 2
2( ) cos3

( )( ) cos3t
h

tq t t
ex tv t dt dt e t dt−= = =∫ ∫ ∫ . 

The integral is found using integration by parts (twice) and some algebra. As a reminder of integration methods, 
the calculation would go something like this: 

( ) ( ) ( )

2 2 2 2 2 2

2 2 2 2

1 2 1 2 1 2
3 3 3 3 3 3

13 31 2 4 1 2 2
3 9 9 9 3 9 13 13

cos3 sin 3 sin 3 sin 3 cos3 cos3

sin 3 cos3 sin 3 cos3 cos3 cos3 sin 3

t t t t t t

t t t t

I e t dt e t e t dt e t e t e t dt

e t t I I e t t I e t dt e t t

 = = − = − − + 

= + − ⇒ = + ⇒ = = +

∫ ∫ ∫

∫
 

So the particular solution is ( )( )2 23 32 2
13 13 13 13( ) cos3 sin 3 cos3 sin 3t t

px t e t t e t t−= + = +  and the general solution is 

then 2 32
13 13( ) cos3 sin 3tx t ce t t−= + +  where c is an arbitrary constant to be determined by initial conditions. 

You can check that this coincides with the solution we derived last time via other methods. We also have the 
option of putting this in the form 2

0
1
13( ) cos(3 )tx t ce t φ−= + −  where 0 56.31φ ≅ °  as we showed last time. 

Complex variable methods for working with sinusoidal and exponential inputs 
The calculation above might lead you to believe that any time we’re dealing with a linear ODE of the form 

( )T f g=  where the input is sinusoidal we should expect involved integral calculations. Indeed, we might 
consider inputs of the form ( ) atg t ke=  or ( ) cosatg t ke bt=  or ( ) sinatg t ke bt=  for various choices of the 
constants , ,k a b . 
Somewhere in your mathematical history you most likely learned a few things about complex numbers. We 
initially express complex numbers in the rectangular form z a ib= +  where 2 1i = − . Complex numbers can be 
viewed in vector-like terms in the complex plane as shown in the diagram. We define: 

modulus (z) = mod (z) = |z| = 2 2a b+  
argument (z) = arg (z) = ( )1tan b

aθ −= .  

We add complex numbers by adding their respective real and 
imaginary parts, in much the same way as vector addition is 
defined. We multiply complex numbers via the distributive law 
and the fact that 2 1i = − . For example: 

2(3 2 )( 1 4 ) 3 2 12 8 3 14 8 5 14i i i i i i i+ − − = − − − − = − − + = − . 

If we note that cosa z θ=  and sinb z θ= , then we can write 

(cos sin )z a bi z iθ θ= + = + . There’s a simpler way to express 

this using Euler’s formula. The Maclaurin series for te , cos t , and sin t  are: 

2 3 4

2 4

3 5

2! 3! 4!

2! 4!

3! 5!

1

cos 1

sin

t t t t

t t

t t

e t

t

t t

 = + + + + +
  = − + + 
 = − + −  







. 

If we formally replace t by it  and use the usual algebra rules, we get that: 

( ) ( )2 3 4 2 4 3

2! 3! 4! 2! 4! 3!
( ) ( ) ( )1 1 cos sinit it it it t t te it i t t i t= + + + + + = − + − + − + = +    

 z = a + ib 

θ 
a = Re(z) 

b = Im(z) |z| 

Re 

Im 
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That is, cos sinite t i t= +   [Euler’s Formula] 

A curious corollary of this is Euler’s Identity: 1ie π = − . 

Using Euler’s Formula, we can express any complex number as (cos sin ) iz a bi z i z e θθ θ= + = + =  where z  
is the modulus and θ  is the argument of the complex number. This polar form allows us to understand the 
multiplication of complex numbers in very geometric terms. That is, if 1

1 1
iz z e θ=  and 2

2 2
iz z e θ=  are two 

complex numbers, their product is 1 2 1 2( )
1 2 1 2 1 2

i i iz z z z e e z z eθ θ θ θ+= = . That is, the modulus of the product is 

given by 1 2 1 2z z z z=  and the argument of the product is given by 1 2 1 2 1 2( ) ( ) ( )Arg z z Arg z Arg zθ θ= + = + . 
When we multiply complex numbers, we multiply the moduli and we add the arguments. 
As a special case, note that the complex number i  has modulus 1 and argument 2 90π = ° . So 2i  should have 
modulus 1 and argument 180π = ° , and this does indeed correspond to 1− . 

Perhaps more interesting is what this tells us about the “roots of unity”. If we seek solutions to the equation 
1nz =  or, equivalently, 1 0nz − = , we know that 1z =  is a solution, but what are the other solutions? One way 

to approach this might be via factoring, i.e. 1 21 ( 1)( 1) 0n n nz z z z z− −− = − + + + + =  and we’d be seeking a 
factorization of 1 2 1 0n nz z z− −+ + + + = . If, instead, we think of this geometrically, it should be pretty clear 
that any such root would have to have modulus 1 (so it would lie on the unit circle in the complex plane) and 
it’s argument θ  would have to be such that 2n kθ π=  for some integer k. Any such number must be of the form 

( )2i k nz e π= , and these consist of n points evenly distributed on the unit circle including 1z = . For example , the 

solutions to 3 1z =  would be ( ) ( ){ }2 3 4 31, ,i ie eπ π , i.e. { }3 31 1
2 2 2 21, ,i i− + − − . 

Definition: The complex conjugate of z a ib= +  is defined to be z a ib= − . In the complex plane, z and z  are 

reflections of each other across the real axis. It’s not hard to show that 1 2 1 2z z z z+ = +  and 1 2 1 2z z z z= . 

When factoring polynomials with real coefficients, the Fundamental Theorem of Algebra and the Quadratic 
Formula guarantee that any complex roots must come in complex conjugate pairs. 

A little more trigonometry 
We can use Euler’s formula to produce a quick derivation of the sum of angle formulas for both the sine and 
cosine functions. We have: 

( )( ) ( ) ( )( ) cos sin cos sin cos cos sin sin sin cos cos sini i ie e e i i iθ φ θ φ θ θ φ φ θ φ θ φ θ φ θ φ+ = = + + = − + + . 

So, since ( ) cos( ) sin( )ie iθ φ θ φ θ φ+ = + + + , comparing the real parts and the imaginary parts give that: 
cos( ) cos cos sin sinθ φ θ φ θ φ+ = −  and sin( ) sin cos cos sinθ φ θ φ θ φ+ = + . 

Application to integration 
We can actually find the integrals cosate bt dt∫  and sinate bt dt∫  simultaneously using complex numbers. 

If we write cos sinibte bt i bt= + , then ( ) cos sina ib t at ibt at ate e e e bt ie bt+ = = + . 

Integration acts linearly, and if we extend this to complex-valued functions, we have that: 
( ) cos sina ib t at ate dt e bt dt i e bt dt+ = +∫ ∫ ∫ . 

Exponential functions are easy to integrate (even when we extend to complex-valued exponential functions), 
and we calculate that ( ) ( )1a ib t a ib t

a ibe dt e+ +
+=∫ . We can proceed several ways here, but for the purpose of 
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calculating these integrals, let’s get rid of the complex denominator by multiplying both numerator and 
denominator by its complex conjugate (and use the fact that 22 2( )( )zz a ib a ib a b z= + − = + = ). We get: 

[ ]
2 2 2 2

2 2

( ) ( )1 1

1

( )(cos sin )

( cos sin ) ( cos sin )

a ib t a ib t at ibt at

at

a ib
a ib a b a b

a b

e dt e e e e a ib bt i bt

e a bt b bt i b bt a bt

+ + −
+ + +

+

= = = − +

= + + − +

∫  

If we compare this with ( ) cos sina ib t at ate dt e bt dt i e bt dt+ = +∫ ∫ ∫ , we see that: 

2 2
1cos ( cos sin )at at

a be bt dt e a bt b bt+= +∫  and 2 2
1sin ( cos sin )at at

a be bt dt e b bt a bt+= − +∫ . 

If we were to apply this to the integral calculated earlier using integration by parts, we’d get that: 

( )2 21
13cos3 2cos3 3sin 3t te t dt e t t C= + +∫  

This agrees with our previous result. 

Next time we’ll apply these methods involving complex-valued functions to discover a remarkably simple way 
of finding particular solutions to any linear ODE of the form ( )T f g=  where the input ( )g t  is any function of 
the form ( ) atg t ke=  or ( ) cosatg t ke bt=  or ( ) sinatg t ke bt=  for various choices of the constants , ,k a b . 

We’ll also take a step back and look at autonomous systems in general, i.e. ODEs of the form ( )dP
dt F P= , by 

considering the phase line, the corresponding slope field, and by understanding the idea of stability in the 
vicinity of any equilibrium. 
 
 

Notes by Robert Winters 


