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Concourse 18.03 – Lecture #3 

Today’s lecture builds on the idea of linearity in the context of ordinary differential equations and how this can 
be used to produce all solutions to an nth order linear ordinary differential equation. Recall the basic definition 
and method from the previous lecture: 

Definition: A differential equation of the form 
1

11 1 0( ) ( ) ( ) ( ) ( )
n n

n nn
d x d x dx
dt dtdtp t p t p t x t q t



     , 

where 1 1 0( ), , ( ), ( ), ( )np t p t p t q t   are functions of the independent variable t, is called an nth 

order linear ordinary differential equation. In the case where ( ) 0q t   for all t, we call the 
equation homogeneous. Otherwise we call it inhomogeneous. 

Linearity method using homogeneous solutions and particular solutions 
Suppose we have an inhomogeneous linear ODE of the form ( )T f g  where T  is an nth order linear 
differential operator. We can produce ALL solutions to ( )T f g  as follows: 
(1) First solve the homogeneous equation ( ) 0T f   to find a general expression for all such solutions. Call this 

the homogeneous solution hf . It will generally involve n arbitrary constants. 

(2) Find a single particular solution to the inhomogeneous equation ( )T f g . Call this particular solution pf . 

(3) The general solution to ( )T f g  is then h pf f f  . 

Analogy with systems of linear equations 
Suppose we want to solve a consistent, inhomogeneous system of linear algebraic equations. In matrix form, if 
the system is represented as Ax b  where A is an m n  matrix, and if hx  represents all solutions to the 

homogeneous equation Ax 0  and px  is a single solution to Ax b , then all solutions to Ax b  will be of 

the form h p x x x . Typically, these homogeneous solutions are lines, planes or higher-dimensional analogues 

(subspaces) passing through the origin. This just says that the inhomogeneous solutions are parallel translates of 
these subspaces. 

Example: Find all solutions of the linear system 
2 3

2 5 2
3 7 5

x z
x y z
x y z

      
    

. We can solve this most easily by row 

reduction to get an equivalent system from which we can readily express all solutions. Specifically, we have: 

1 0 2 3 1 0 2 3 1 0 2 3 2 3 3 2 3 2
2 1 5 2 0 1 1 4 0 1 1 4 4 4 4 1
3 1 7 5 0 1 1 4 0 0 0 0  arbitrary 0 1

x z x t x
y z y t y t

z z t z
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If we were to solve the corresponding homogeneous linear system 
2 0

2 5 0
3 7 0

x z
x y z
x y z

      
    

, the process is similar: 

1 0 2 0 1 0 2 0 1 0 2 0 2 0 2 2
2 1 5 0 0 1 1 0 0 1 1 0 0 1
3 1 7 0 0 1 1 0 0 0 0 0  arbitrary 1

x z x t x
y z y t y t

z z t z

                                                                       
 

The only difference is that the inhomogeneous solutions differ from the homogeneous solutions by a particular 
solution (which corresponds to 0t  ). 
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Back to solving differential equations 

Example #1: Solve the initial value problem 2 ; (0) 5dy
dx xy x y   . 

(1) First, we solve the homogeneous equation 0dy
dx xy  . This will always be separable. We get dy

dx xy   and 

dy
y xdx  , so 

21
221

2ln x
h

dy
y xdx y x C y Ae         . 

(2) Next, we seek a particular solution to 2dy
dx xy x  . The Method of Undetermined Coefficients is a good 

choice here based on the relatively simple functions involved. If we try a solution of the form 2
py ax bx c    

(which is actually more general that we really need), we have 2dy
dx ax b  , so substitution into the ODE gives: 

2 3 2(2 ) ( ) (2 ) 2ax b x ax bx c ax bx a c x b x           

So we must have 0, 0, 2 2, 0 0, 0, 2 2pa b a c b a b c y           . 

(3) So, the general solution must be 
21

2 2x
h py y y Ae    . The initial value gives (0) 2 5y A   , so 3A   

and the unique solution to the initial value problem is 
21

23 2xy e  . 

Note: This problem could also have been solved using the integrating factor 
21

2 xe  derived by the method already 

discussed. This would give  2 2 2 2 2 2 21 1 1 1 1 1 1
2 2 2 2 2 2 22 2 2x x x x x x xdy d

dx dxe xe y e y xe e y e C y Ce         , as 

above. 

Example #2: Solve the initial value problem 
2

2 3 2 sin , (0) 1, (0) 2d y dy
dx dx y x y y     . 

This problem cannot be done using an integrating factor as that’s really a method specific to 1st order linear 
equations. So we proceed using our methods based on linearity. 

(1) First we seek homogeneous solutions, i.e. solutions of 
2

2 3 2 0d y dy
dx dx y   . We’re getting a little ahead of 

ourselves here, but for a linear ODE with constant coefficients we begin by seeking exponential solutions of the 

form rxy e . The logic behind this choice will be developed soon, but differentiation gives rxdy
dx re  and 

2

2

2 rxd y
dx r e . Substitution into the ODE gives 2 23 2 ( 3 2) 0rx rx rx rxr e re e r r e      . This can only vanish when 

2 3 2 ( 1)( 2) 0r r r r      , so either 1r   or 2r  . Therefore 1
xy e  and 2

2
xy e  are solutions. 

Now here’s where linearity becomes especially useful. If ( ) 0T y   is the form of the homogeneous equation (so 

1( ) 0T y   and 2( ) 0T y  ), then any function of the form 1 1 2 2c y c y  will also satisfy the homogeneous equation, 

i.e. 1 1 2 2 1 1 2 2 1 2( ) ( ) ( ) 0 0 0T c y c y c T y c T y c c        . So 2
1 2

x x
hy c e c e   will give homogeneous solutions 

for any scalars 1 2,c c . Though we have not yet shown it, the fact is that these give all of the homogeneous 

solutions. 

(2) Now let’s concentrate on getting a particular solution to the original inhomogeneous equation. If you think 
about what kinds of functions might be such that when combined with its 1st and 2nd derivatives in the manner 
prescribed by the ODE to yield the function sin x , it should be pretty clear that something of the form 

sin cospy A x B x   is a likely candidate. We have 

sin cos

sin cos

sin cos

p

p

p

y A x B x

y B x A x

y A x B x

  
     
     

, so: 
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3 2 ( 3 2 )sin ( 3 2 )cos ( 3 )sin ( 3 )cos sinp p py y y A B A x B A B x A B x A B x x                  

This implies that 
1 1

10 101
10 3 3

10 10

3 1 1 3 1 1 3 1
3 0 3 1 0 3 1 0

AA B A A
A B B B B

                                                                
. 

So 31
10 10sin cospy x x   is a particular solution. 

(3) Therefore all solutions are of the form 2
1 2

31
10 10( ) sin cosx xy x c e c e x x    . 

Finally, to solve the given initial value problem, note that 2
1 2

31
10 10( ) 2 cos sinx xy x c e c e x x     , so: 

1 21 2 2
2 1

1 2 1 2

73
1010 6 6 31 1 1

5 52 2 10 10191
10 10

(0) 1
, ( ) sin cos

(0) 2 2 2
x x

c cy c c
c c y x e e x x

y c c c c

                                   
 

The next topic we’ll discuss is the Input-Response formalism for understanding nth order linear inhomogeneous 
ordinary differential equations (if you don’t mind all the adjectives). 

 
Notes by Robert Winters 


