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Concourse 18.03 – Lecture #17-18 
In today’s lecture we define Convolution and apply it along with unit impulse response to determine the Zero 
State Response (ZSR) for a time-invariant n-th order linear ODE, i.e. an ODE of the form ( )[ ( )] ( )p D x t f t= . In 
this context we are only interested in solutions for 0t > . These methods are particularly useful for dealing with 
input functions ( )f t  defined by data rather than simply by familiar elementary functions. 

Definition (again): The Laplace transform of a function ( )f t  is defined by 
0

[ ( )] ( ) ( )stf t F s e f t dt
∞ −

−
= = ∫L  

where the new (complex) variable s  is such that its real part Re( ) 0s   (the integral would otherwise not 
converge). Note that the lower limit of the integral indicates that 0t =  is included and is intended to address 
potential discontinuities and delta functions. We use the convention that a function of t  will be represented by a 
lower case name and its Laplace transform by the corresponding upper case name, e.g. [ ( )] ( )x t X s=L . 

Unit Impulse Response 
Unit impulse response refers to the solution of the ODE ( )[ ( )] ( )p D x t tδ=  with rest initial conditions. The 
solution is also known as the weight function for the given differential operator ( )p D . It is the simplest to 
tackle algebraically and we’ll use it soon along with convolution to solve Initial Value Problems. We generally 
denote the unit impulse response (weight function) by ( )w t . It’s Laplace Transform ( )W s  is called the transfer 
function. 

Unit Step Response 
Unit step response refers to the solution of the ODE ( )[ ( )] ( )p D x t u t=  with rest initial conditions. It is a bit 
more algebraically complicated to solve than the unit impulse response but is still relatively simple. We 
generally denote the unit step response by ( )v t . 

It is worth noting that because these differential operators are time-invariant (constant coefficients), we can use 
the generalized derivative to differentiate both sides of ( )[ ( )] ( )p D x t u t=  to get 

( )[ ( )] ( )[ ( ( ))] ( )[ ( )] [ ( )] ( )D p D v t p D D v t p D v t D u t tδ= = = =
 , so ( )[ ( )] ( )p D v t tδ= . Therefore ( ) ( )v t w t= . 

Example 1: Find the unit impulse response and the unit step response for the operator ( ) 3p D D I= + . 

Solution: For the unit impulse response we solve 3 ( )w w tδ+ =  with rest initial conditions. Transforming both 

sides gives ( ) ( ) ( 3) ( ) 1p s W s s W s= + = , so 1 1( )
( ) 3

W s
p s s

= =
+

. This is just 3( )te−L , so 3( ) tw t e−= . 

For the unit step response we solve 3 ( )v v u t+ =  with rest initial conditions. Transforming both sides gives 
1( ) ( ) ( 3) ( )p s V s s V s
s

= + = , so 1
3

1 1 1( )
( 3) 3

V s
s s s s

 = = − + + 
. It follows that 31

3( ) (1 )tv t e−= − . 

Example 2: Find the unit impulse response for the operator 2 2( )p D D ω= +  where ω  is a given positive 
constant (natural frequency for a harmonic oscillator). 

Solution: For the unit impulse response we solve 2 ( )w w tω δ+ =  with rest initial conditions. Transforming both 

sides gives 2 2( ) ( ) ( ) ( ) 1p s W s s W sω= + = , so 2 2

1 1( )
( )

W s
p s s ω

= =
+

. Adjusting the coefficients to write this as 

2 2

1( )W s
s
ω

ω ω
 =  + 

 we deduce from our table of transforms that 1( ) sin( )w t tω ω= . 
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+ZIR ZSR  
Given an n-th order linear ODE ( )[ ( )] ( )p D x t f t=  with initial conditions 0 0( )x t x=  and 0 0( )x t x=  , …, 

( 1) ( 1)
0 0( )n nx t x− −= , we refer to the case where 0( ) 0x t =  and 0( ) 0x t = , …, ( 1)

0( ) 0nx t− =  as the zero state. If we 
solve ( )[ ( )] ( )p D x t f t=  for the zero state, we refer to this solution ( )ZSRx t as the zero state response (ZSR). 

If we seek homogeneous solutions to the ODE ( )[ ( )] 0p D x t =  with initial conditions 0 0( )x t x=  and 0 0( )x t x=  , 
…, ( 1) ( 1)

0 0( )n nx t x− −= , this will have a unique solution ( )ZIRx t  called the zero input response (ZIR). 

The general solution to the ODE ( )[ ( )] ( )p D x t f t=  will be ( ) ( ) ( )h px t x t x t= +  for some particular solution 
( )px t  and homogeneous solutions ( )hx t , and we would then use the initial conditions to determine any 

unknown coefficients. However, note that the zero state response (ZSR) is a particular solution and the zero 
input response is a (single) homogeneous solution. If we let ( ) ( ) ( )ZIR ZSRx t x t x t= + , note that: 

0 0 0 0 0 0

0 0 0 0 0 0

( 1) ( 1) ( 1) ( 1) ( 1) ( 1)
0 0 0 0 0 0

( ) ( ) ( ) ( ) 0 ( )
( ) ( ) ( ) ( ) 0 ( )

( ) ( ) ( ) ( ) 0 ( )

ZIR ZSR ZIR ZIR

ZIR ZSR ZIR ZIR

n n n n n n
ZIR ZSR ZIR ZIR

x t x t x t x t x t x
x t x t x t x t x t x

x t x t x t x t x t x− − − − − −

= + = + = = 
 = + = + = = 
 
 

= + = + = =  

     



 

so ( ) ( ) ( )h px t x t x t= +  satisfies the initial value problem (IVP) without the need to introduce any additional 
constants. That is, ( )x t = +ZIR ZSR . 

This observation is very helpful when solving initial value problems using Laplace Transform methods – 
specifically when we use the Unit Impulse Response together with convolution to solve for the zero state 
response (ZSR). More on that later. 

Example 3: Solve the IVP 3 3cos 2dx
dt x t+ =  with initial value (0 ) 2x − =  (the 0−  is just for emphasis here). 

Solution: First, it should be emphasized that for a problem like this our previous methods work well and there is 
no particular need to use Laplace transform methods. That said, we proceed with two different approaches. 

Laplace Direct: For this we simply transform both sides of the equation mindful of the need to incorporate the 
initial condition as we transform the derivative. This gives: 

2

3( ) 2 3 ( ) ( 3) ( ) 2
4

ssX s X s s X s
s

− + = + − =
+

, so 
2

2 2

3 2 3 8( 3) ( ) 2
4 4

s s ss X s
s s

+ +
+ = + =

+ +
. 

Therefore 
2

2 2

2 3 8( )
( 3)( 4) 3 4

s s A Bs CX s
s s s s

+ + +
= = +

+ + + +
.  

Clearing fractions gives 2 22 3 8 ( 4) ( 3)( )s s A s s Bs C+ + = + + + +  

There are several good ways to proceed. First, if we choose convenient points we might first choose 3s = −  to 
quickly conclude that 17 13A= , so 17

13A = . You might think the well has run dry, but we are free to use 

complex numbers. If we choose 2s i=  (and as we’ll see we won’t even have to separately consider its complex 
conjugate) we get 8 6 8 6 (3 2 )(2 ) ( 4 3 ) (6 2 )i i i Bi C B C i B C− + + = = + + = − + + + . We can equate both real and 

imaginary parts to conclude that 4 3 0B C− + =  and 6 2 6B C+ = . These give 9
13B =  and 12

13C = . 

Thus 2 2
17 9 6
13 13 13

1 2( )
3 4 4

sX s
s s s

     = + +     + + +     
. So 317 9 6

13 13 13( ) cos 2 sin 2tx t e t t−= + + . 
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Alternatively, we could simply multiply out and collect terms to get 
2 22 3 8 ( ) (3 ) (4 3 )s s A B s B C s A C+ + = + + + + +  and then use your favorite linear algebra method to derive the 

same results as above. 

ZSR+ZIR (not really recommended here): If we first solve 3 3cos 2dx
dt x t+ =  with rest initial conditions we get 

2

3( 3) ( )
4

ss X s
s

+ =
+

 and 2 2 2
9 9 6

13 13 13
3 1 2( )

( 3)( 4) 3 4 4
s sX s

s s s s s
     = = − + +     + + + + +     

. So 

39 9 6
13 13 13( ) cos 2 sin 2t

ZSRx t e t t−= − + + . Next we seek the zero input response, so we solve 3 0dx
dt x+ =  with 

(0) 2x = . This quickly gives 3( ) 2 t
ZIRx t e−= . Combining these gives 317 9 6

13 13 13( ) cos 2 sin 2tx t e t t−= + + . 

Convolution 

Situation: We need to solve a differential equation of the form ( )[ ( )] ( )p D x t f t=  with initial conditions 

0 0(0) , (0)x x x x= =  , etc. 

Plan: If we can find the unit impulse response for this system (with rest 
initial conditions), i.e. the solution to ( )[ ( )] ( )p D x t tδ=  with initial 
conditions (0) 0, (0) 0x x= = , etc., we will develop a method for finding a 
solution to ( )[ ( )] ( )p D x t f t=  by thinking of ( )f t  as a “train of impulses.” 
We will likely use Laplace transform methods to find the unit impulse 
response. We’ll use Riemann Sums ideas to construct an integral by piecing 
together solutions associated with the impulses. This will be the convolution 
integral. 

Developing the convolution integral 
(1) We start by solving for the unit impulse function ( )w t , i.e. the solution to ( )[ ( )] ( )p D x t tδ=  with initial 

conditions (0) 0, (0) 0x x= = , etc. We refer to this by ( )w t  and reserve ( )x t  for the solution to 
( )[ ( )] ( )p D x t f t= . If ( )W s  is the Laplace transform of ( )w t , we’ll have ( ) ( ) 1p s W s =  where ( )p s  is the 

characteristic polynomial, so 1( )
( )

W s
p s

=  and with some partial fractions calculations and the inverse 

Laplace transform, finding ( )w t  can be reduced to a relatively simple routine. 
We call ( )w t  the weight function, and we call ( )W s  the transfer function. 

(2) We use time invariance to declare that the translated unit impulse response for ( )[ ( )] ( )kp D x t t t= −δ  will 
be ( )kw t t− . We’ll use this in the integral to follow. 

(3) If we’re interested in understanding what’s happening during the time interval [0, ]t , we start by partitioning 
this interval into many small subintervals 1[ , ]k kt t− . On each of these subintervals, we can use a box function 
to “switch on” just one small section of the function ( )f t . That is, if we let 

1( ) ( )[ ( ) ( )]k k kf t f t u t t u t t−= − − −  then this function will be identically zero except in the k-th subinterval 

1[ , ]k kt t− . We can later reassemble the function as ( ) ( )kf t f t=∑ . 

If ( )f t  is reasonably well behaved (except, perhaps, at finitely many points), we can say that within a given 

subinterval, 
0

( ) ( ) ( ) ( ) ( ) ( )k k k kf t f t f t t t dt f t t t dt
+∞ +∞

−∞
≅ = δ − = δ −∫ ∫ , where we use the fact that evaluation of 

a function at a point is accomplished by integrating against a delta function concentrated at that point. 
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(4) If the solution to ( )[ ( )] ( )kp D x t t t= −δ  is ( )kw t t− , then linearity gives that the solution to 
( )[ ( )] ( ) ( )k k kp D x t f t t t t= − Dδ  will be ( ) ( )k k kf t w t t t− D  where 1k k kt t t −D = −  is the width of the k-th 

subinterval. [We simply multiplied both sides by ( )k kf t tD .] 

(5) By linearity (superposition), we can sum to get that the solution to ( )[ ( )] ( ) ( )k k k
k

p D x t f t t t t≅ − D∑ δ  must 

therefore be ( ) ( ) ( ) ( ) ( )k k k k k k
k k

x t f t w t t t f t w t≅ − D = − D∑ ∑ t t , 

where we changed to the variable t  in anticipation of the next step. 

(6) If we pass to the limit as the norm of the partition goes to zero, the 
sum will become an integral and the approximation will become 

exact, i.e. 
0

( ) ( ) ( ) ( )( )
t

x t f w t d f w t= − ≡ ∗∫ t t t , the convolution 

integral. This provides a solution to ( )[ ( )] ( )p D x t f t=  for the zero 
state (rest conditions), and we refer to this solution as the zero state 
response (ZSR). 

Definition (Convolution): Given two functions ( )w t  and ( )f t , we define 
0

( )( ) ( ) ( )
t

f w t f w t d∗ = −∫ t t t . 

It’s a straightforward exercise to show that the convolution product is commutative, i.e. f w w f∗ = ∗ . 

Even More Calculations (continuing where we left off) 
17) Convolution: 

0 0
( )( ) ( ) ( ) ( ) ( ) ( )( )

t t
f g t f g t d g f t d g f tt t t t t t∗ = − = − = ∗∫ ∫ , i.e. convolution is 

commutative. 
This follows by substitution. If we let u t t= −  ( u  and t  are the variables here), then du dt= −  and when 
we also adjust the integral limits we get: 

0

0 0
( )( ) ( ) ( ) ( ) ( ) ( ) ( ) ( )( )

t u u t

u t u
f g t f g t d f t u g u du g u f t u du g f t

t

t
t t t

= = =

= = =
∗ = − = − − = − = ∗∫ ∫ ∫  

18) If [ ( )] ( )f t F s=L  and [ ( )] ( )g t G s=L , then [( )( )] ( ) ( )f g t F s G s∗ =L  

0 0
[( )( )] ( ) ( ) ( ) ( )

tstf g t e f g t d dt F s G st t t
∞ −

−

 ∗ = − =  ∫ ∫L  

The fact that the solution to the differential equation ( ) ( )p D x f t=  will have the solution ( )( )f w t∗  is also 
known as Green’s Formula. 

Note: When applying the convolution method to solving ( ) ( )p D x f t=  for more general initial conditions, the 
solution will be ( )x t = +ZIR ZSR , where ZIR is the zero input response and ZSR is the zero state response. 

The usefulness of this transform method is built on the fact that we can relatively easily find the Laplace 
transform for most everything that appears in a given differential equation of the form ( ) ( )p D x f t= , and once 
we have a table of these transforms we can generally invert the process by inspection. Another essential fact is 
that the Laplace transform acts linearly, and this allows us to decompose complex problems into a sums of 
simple problems. 

Example 4 (with a familiar input): Solve 3 2 2 , (0) 0, (0) 0tx x x e x x−+ + = = =    using (a) previous methods, 
(b) using only the Laplace transform, and (c) using the Laplace transform plus convolution. 
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Solution: (a) For the homogeneous equation 3 2 0x x x+ + =  , the characteristic polynomial is 
2( ) 3 2 ( 2)( 1)p s s s s s= + + = + +  which yields the two roots 2s = −  and 1s = − . This gives the two independent 

solutions 2te−  and te− , and all homogeneous solutions are of the form 2
1 2( ) t t

hx t c e c e− −= + .  

In seeking a particular solution ( )px t  that satisfies the inhomogeneous differential equation, we see that the 
Exponential Response Formula (ERF) won’t work – there is resonance. We can, however, use the Resonant 

Response Formula to get the particular solution 2 2( ) 2
( 1) 1

t t
t

p
te tex t te

p

− −
−= = =

′ −
, so the general solution is 

2
1 2( ) ( ) ( ) 2t t t

h px t x t x t c e c e te− − −= + = + + . Its derivative is 2
1 2( ) 2 2 2t t t tx t c e c e te e− − − −= − − − + . Substituting the 

(rest) initial conditions gives 1 2

1 2

(0) 0
(0) 2 2 0

x c c
x c c

= + = 
 = − − + = 

, and these can be solved to give 1 22, 2c c= = − , so the 

solution is 2( ) 2 2 2t t tx t e e te− − −= − + . 

(b) We need the following Laplace transforms: 

(1) 1( )kte
s k

=
−

L  with region of convergence Re( )s k> , so 2 1( )
2

te
s

− =
+

L . 

(2) If the Laplace transform of ( )x t  is ( )X s , then the Laplace transforms of its derivatives are 
( ( )) ( ) (0 )x t sX s x= − −L   and 2( ( )) ( ) (0 ) (0 )x t s X s s x x= − − − −L   . We have rest initial conditions, so 

these are greatly simplified and, in fact, ( ( ) ) ( ) ( )p D x p s X s=L . Specifically, 
2 2( 3 2 ) ( ) 3 ( ) 2 ( ) ( 3 2) ( ) ( ) ( )x x x s X s sX s X s s s X s p s X s+ + = + + = + + =L   . 

If we now transform the entire differential equation, we get 2 2( 3 2) ( )
1

s s X s
s

+ + =
+

. 

We then solve for 2 2 2

2 2( )
( 1)( 3 2) ( 2)( 1) 2 1 ( 1)

A B CX s
s s s s s s s s

= = = + +
+ + + + + + + +

. 

There are many good ways to find the unknowns A, B, and C. For example, if we multiply through by the 
common denominator to clear fractions, we get 22 ( 1) ( 1)( 2) ( 2)A s B s s C s= + + + + + + . Plugging in the specific 
values 2s = −  and 1s = −  quickly yields that 2A =  and 2C = . Plugging in, for example, 0s =  and using the 

values for A and C then yields 2B = − . So 2

2 2 2( )
2 1 ( 1)

X s
s s s

= − +
+ + +

. 

Consulting our table of common Laplace transforms, we see that 22 (2 )
2

te
s

−=
+

L , 2 (2 )
1

te
s

−=
+

L , and 

2

2 (2 )
( 1)

tte
s

−=
+

L , so transforming back gives 2( ) 2 2 2t t tx t e e te− − −= − + . 

(c) We start by finding the unit impulse response, a the solution to 3 2 ( )x x x tδ+ + =   with rest initial conditions 

(0) 0, (0) 0x x= = . Laplace transform gives ( ) ( ) 1p s W s = , so 1 1 1( )
( 2)( 1) 2 1

W s
s s s s

= = − +
+ + + +

. Consulting 

the Laplace transform table, this yields the weight function 2
2

0 0
( ) ( )( )

0
t t

t t
t

w t u t e e
e e t

− −
− −

< = = − + − + > 
. 

With ( ) 2 tf t e−= , then convolution of the weight function and the given input signal gives: 
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2 ( )

0 0

00

2

( )( ) ( ) ( ) ( )2

2 ( 1) 2 2 [ 1 ]

2 2 2 ( )

t t t

t tt t t t

t t t

w f t w f t d e e e d

e e d e e e e t

e e te x t

= = − − − −

= =

= =− − − − − −

==

− − −

∗ = − = − +

 = − + = + = − + 

= + − + =

∫ ∫

∫

t t t t t

t t

t tt t

tt

t t t t

t t  

Alternatively, we could have calculated this as: 

2( ) ( )

0 0

2 2 2

0

( )( ) ( ) ( ) 2 ( )

( 2 2 ) 2 ( 1) 2 ( 0) 2 2 2 ( )

t t t t

t t t t t t t t t

f w t f w t d e e e d

e e e d e e e t e e te x t

= = − − − − −

= =

= − − − − − − −

=

∗ = − = − +

= − + = − − + − = + − + =

∫ ∫

∫

t t t t t

t t

t t

t

t t t t

t
 

Example 5: Solve the same ODE as above but with non-rest initial conditions: 
3 2 2 , (0) 4, (0) 0tx x x e x x−+ + = = =    

Solution: All of the previous steps are the same in deriving the zero state response (ZSR), so we have 
22 2 2t t te e te− − −= + − +ZSR . 

We need only find the zero input response (ZIR). This simply means that we solve 3 2 0x x x+ + =   to get 
2

1 2( ) t t
hx t c e c e− −= +  and 2

1 2( ) 2 t t
hx t c e c e− −= − − , so 1 2

1 2
1 2

(0) 4 4, 8(0) 2 0
h

h

x c c c cx c c
= + = ⇒ = − = = − − = 

. 

So 24 8t te e− −= − +ZIR . 

Therefore 2 2 2( ) 2 2 2 4 8 2 6 2t t t t t t t tx t e e te e e e e te− − − − − − − −= + = + − + − + = − + +ZSR ZIR . 
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Properties of the Laplace transform 
0. Definition: 

0
[ ( )] ( ) ( )stf t F s e f t dt

∞ −

−
= = ∫L    for Re( ) 0s  . 

1. Linearity: [ ( ) ( )] [ ( )] [ ( )] ( ) ( )af t bg t a f t b g t aF s bG s+ = + = +L L L . 

2. Inverse transform: ( )F s  essentially determines ( )f t . 

3. s-shift rule: [ ( )] ( )rte f t F s r= −L . 

4. t-shift rule: [ ( )] ( )asf t a e F s−− =L    if 0a ≥  and ( ) 0f t =  for 0t < . 

5. s-derivative rule: [ ( )] ( )t f t F s′= −L . 

6. t-derivative rule: [ ( )] ( ) (0 )f t sF s f′ = − −L         2[ ( )] ( ) (0 ) (0 )f t s F s sf f′′ ′= − − − −L  
( ) 1 2 ( 1)[ ( )] ( ) (0 ) (0 ) (0 )n n n n nf t s F s s f s f f− − −′= − − − − − − −L   

7. Convolution rule: [ ( ) ( )] ( ) ( )f t g t F s G s∗ =L ,   
0

( )( ) ( ) ( )
t

f g t f t g dt t t∗ = −∫ . 

8. Weight function: [ ( )] ( )w t W s=L , ( )w t  the unit impulse response. 

If ( )q t  is regarded as the input signal in ( ) ( )p D x q t= , 1
( )( ) p sW s = . 

Formulas for the Laplace transform 

1[1] s=L  

[ ( )] 1tδ =L  

[ ( )] [ ( )] as
at a t eδ δ −− = =L L  

[ ( )] [ ( )]
as

a
eu t a u t s

−

− = =L L  

1[ ]ate
s a

=
−

L  

2

1[ ]t
s

=L  

1

![ ]n
n

nt
s +=L  

( )[ ( )] ( 1) ( )n n nt f t F s= −L  

[ ( ) ( )] ( )asu t a f t a e F s−− − =L  

[ ( ) ( )] [ ( )]asu t a f t e f t a−− = +L L  

2 2[cos( )] st
s

ω
ω

=
+

L  

2 2[sin( )]t
s
ωω
ω

=
+

L  

2 2

2 2 2[ cos( )]
( )

st t
s

ωω
ω
−

=
+

L  

2 2 2

2[ sin( )]
( )

st t
s

ωω
ω

=
+

L  

2 2[ cos( )]
( )

zt s ze t
s z

ω
ω

−
=

− +
L  

2 2[ sin( )]
( )

zte t
s z

ωω
ω

=
− +

L  

Notes by Robert Winters 


