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Concourse 18.03 – Lecture #10 
We continue the study of mass-spring-dashpot systems and categorize these according to whether they are 
underdamped, overdamped, or critically damped. We’ll solve each of the homogeneous cases by producing 
linearly independent solutions that span all solutions. Linear differential operators will be introduced to explain 
why the solutions we derive actually span all solutions. We introduce a few more definitions: zero state, zero 
state response, and zero input response. We also introduce the Exponential Response Formula (ERF) that we’ll 
soon be using extensively. 

Analogy between Mass-Spring-Dashpot systems and LRC circuits 
A spring with an attached mass, friction supplied by a dashpot, and 
external force ( )F t is described by the differential equation 

( )mx cx kx F t+ + =  . This purely mechanical system has an electrical 
analogue known as an LRC circuit where L represents the inductance 
associated with a coil, R represents the resistance, and C represents the 
capacitance. Given a voltage source with variable voltage ( )V t  
(measured in volts), the circuit will have at any time a current ( )I t  
(measured in amperes), and the capacitor will be carrying a charge ( )Q t  
(measured in Coulombs). 

In physics, we learn that there are voltage drops associated with each of the 
elements of the circuit. Specifically, L

dI
dtV LI L= =  due to the inductance, RV IR=  due to the resistance, and 

CV Q C=  due to the capacitance. The sum of the voltage drops must match the voltage source, i.e. 

L R CV V V V= + + . We also know that the current satisfies dQ
dtQ I= = , so dI

dtQ I= =   and CV Q C I C= = . If we 

differentiate to get L R CV V V V= + +     and substitute the above relations, we get that 1
CLI RI I V+ + =    for the 

rate of change of the applied voltage. 

In this mechanical/electrical analogy, the inductance becomes analogous to mass, the resistance is analogous to 
friction, and the (reciprocal of) capacitance is analogous to the stiffness of the spring. Also the rate of change of 
voltage is analogous to the external force (which is the rate of change of momentum). 

Exponential Response Formula (ERF) 
In the previous lecture we introduced a simple method for producing particular solutions to linear constant 
coefficient ODEs in the case where the input was in the form of an exponential function. This was the 
Exponential Response Formula. If the ODE is in the form [ ]( ) ( ) rtp D x t ae=  with characteristic polynomial 

( )p s , and if r is not a characteristic root, then a particular solution will be ( ) ( )
rt

p
aex t p r= . As we noted, this 

formula will fail in the case where r is a characteristic root (since the denominator will vanish). This formula is 
especially useful for dealing with sinusoidal inputs – either pure sinusoidal inputs or with exponential growth or 
decay. The key step is to use complex replacement in order to express the input in exponential form. 

Example: Find the general solution of the ODE 3 2 2 cos3tx x x e t+ + =  . 
Solution: The characteristic polynomial is 2( ) 3 2 ( 2)( 1)p s s s s s= + + = + + . This gives roots 1 2s = − , 2 1s = − , 
and the homogeneous solutions are of the form 2

1 2( ) t t
hx t c e c e− −= + . To produce a particular solution, we use 

complex replacement (and then recover the real part). Letting ( ) ( ) ( )z t x t i y t= + , we’ll simultaneously solve the 
ODEs 3 2 2 cos3tx x x e t+ + =   and 3 2 2 sin 3ty y y e t+ + =  . Using Euler’s formula, we’ll solve the ODE 

3 (1 3 )3 2 2 (cos3 sin 3 ) 2 2t t it i tz z z e t i t e e e ++ + = + = =  . Using the Exponential Response Formula, we calculate 
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2(1 3 ) (1 3 ) 3(1 3 ) 2 1 6 9 3 9 2 3 15p i i i i i i+ = + + + + = + − + + + = − + , so a particular solution is 
(1 3 )2( ) 3 15

i t

p
ez t i

+

= − + . 

We could do one of two things at this point. First, we could multiply the numerator and denominator by the 
complex conjugate 3 15i− −  and also use Euler’s formula to express everything in terms of sines and cosines. 
This would give: 

[ ]
(1 3 )

1 1
117 117

2( ) ( 3 15 )(cos3 sin 3 ) ( 3cos3 15sin 3 ) ( 15cos3 3sin 3 )3 15
i t

t t
p

ez t e i t i t e t t i t ti
+

= = − − + = − + + − −− + . 

We would then recover the real part as 1
117( ) ( 3cos3 15sin 3 )t

px t e t t= − + . 
The second option is particularly well suited to the Exponential Response Formula. If we express the 
denominator as a complex number, i.e. 3 15 234 ii e φ− + =  where ( )1 115

3tan tan ( 5) 1.768φ − −
−= = − ≅ radians (in 

the 3rd quadrant), we can then write [ ]
(1 3 )

(3 )2 2
234 234

2( ) cos(3 ) sin(3 )
234

i t
t i t t

p i
ez t e e e t i t

e
φ

φ
φ φ

+
−= = = − + −  and 

recover the real part to give 2
234( ) cos(3 )t

px t e t φ= − . We can then easily see that the gain is 1
234 , the lag is 

1tan ( 5) 1.768φ −= − ≅  and, by writing 2 1
3234( ) cos3( )t

px t e t φ= − , the time lag is 1
3 0.589φ ≅ . 

The general solution may then be expressed as 2
1 2

2 1
3234( ) cos3( )t t tx t c e c e e t φ− −= + + − . 

Resonance 
The case where the Exponential Response Formula fails is when r in the exponential input rtae  is a root of the 
characteristic polynomial. Though the term “resonance” is perhaps most appropriate when considering 
sinusoidal inputs with frequency matching the natural frequency of a harmonic oscillator (like a spring), we use 
the term more generally. Let’s understand this situation by considering an example. 

Example: Find a particular solution of the ODE 23 2 5 tx x x e−+ + =  . 
Solution: We cannot use the Exponential Response Formula here because 2r = −  is a root of the characteristic 
polynomial 2( ) 3 2p s s s= + + . So what do we do? If we think in terms of differential operators, we can express 
this ODE in the form [ ] 2( 2) ( 1) ( ) 5 tD D x t e−+ + =  and we know that 2 2 2( 2) 2 2 0t t tD e e e− − − + = − + =  . So, if 
we apply this differential operator to both sides of the former equation we get: 

[ ] 2 2( 2) ( 2) ( 1) ( ) ( 2) 5 5( 2) 0t tD D D x t D e D e− −   + + + = + = + =     . 

So we should seek solutions of the 3rd order homogeneous ODE [ ]2( 2) ( 1) ( ) 0D D x t+ + = . The characteristic 

polynomial in this case is 2( 2) ( 1)s s+ +  which gives the same characteristic roots as before only now the root 
2s = −  has multiplicity 2. This means that the homogeneous solutions are given by { }2 2Span , ,t t te te e− − − . The 

original inhomogeneous equation already had homogeneous solutions { }2Span ,t te e− − , so we seek a particular 

solution of the form 2( ) t
px t Ate−=  and use undetermined coefficients. This gives 2( ) ( 2 1) t

px t A t e−= − +  and 
2( ) (4 4) t

px t A t e−= − , so 2 2 2 2 23 2 (4 4) 3 ( 2 1) 2 5t t t t tx x x A t e A t e Ate Ae e− − − − −+ + = − + − + + = − =  . Therefore 

5A = −  and the particular solution is 2( ) 5 t
px t te−= − . 

It’s possible to do this in general. Suppose we have an nth order linear ODE in the form [ ]( ) ( ) rtp D x t ae=  
where r is a root with multiplicity k of the characteristic polynomial ( )p s . This means that we can express the 
characteristic polynomial as ( ) ( )( )kp s q s s r= −  where ( )q s  is a polynomial of degree n k− . The corresponding 
differential operator can then be expressed as ( ) ( ) ( )kT p D q D D rI= = − . If we seek a particular solution of 
the form ( ) k rt

px t At e= , we can calculate 
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1 1( )( ) ( ) ( )k rt k rt k rt k rt k rt k rt k rtD rI At e D At e rAt e A rt e kt e rt e Akt e− −− = − = + − = . If 2k ≥ , we can apply this 
operator again to get 2 2( ) ( ) ( 1)k rt k rtD rI At e Ak k t e−− = − . Continuing, we eventually get to 
( ) ( ) ( 1) (2)(1) !k k rt rt rtD rI At e Ak k e Ak e− = − = . Substituting this into the ODE we get: 
[ ]( ) ( ) ( ) ( ) ( ) ![ ( )( )] ! ( )k rt k k rt rt rt rtp D At e q D D rI At e Ak q D e Ak q r e ae= − = = =a  

So ! ( )Ak q r a= , and 
! ( )
aA

k q r
= , and therefore ( )

! ( )

k rt

p
at ex t
k q r

= . Though we could just use this as our 

“Resonant Response Formula”, we can differentiate ( ) ( )( )kp s q s s r= −  repeatedly to get 
1( ) ( ) ( ) ( )( )k kp s q s k s r q s s r−′ ′= − + − , 2 1( ) ( ) ( 1)( ) 2 ( )( ) ( )( )k k kp s q s k k s r q s s r q s s r− −′′ ′ ′′= − − + − + −  and 

eventually ( ) ( ) ( ) ! ( )(polynomial in )kp s q s k s r s= + − , so ( ) ( ) ( ) !kp r q r k= . We can therefore in general express 

the Resonant Response Formula (RRF) as ( )( )
( )

k rt

p k

at ex t
p r

=  where ( ) ( )kp r  is the value of the kth derivative of 

the characteristic polynomial evaluated at r . Rarely will we need to use this for 1k > , so the usual form is 

simply ( )
( )

rt

p
atex t
p r

=
′

. The Exponential Response Formula (ERF) is just the 0k =  case, i.e. ( ) ( )
rt

p
aex t p r=  

If we had applied the RRF  to the previous example, we would have 2( ) 3 2p s s s= + +  and we would calculate 

( ) 2 3p s s′ = + , so ( 2) 1p′ − = −  and the particular solution would be 
2

25( ) 51
t

t
p

tex t te
−

−= = −− . 

Superposition of (particular) solutions 
In the case where a linear differential equation has an input expressed as the sum of two or more functions, 
linearity allows us to find solutions for each input individually and then sum these solutions to produce a 
solution for the original ODE. That is, if we have a linear ODE of the form 1 2( )T f g g= +  and if can 
individually find functions 1f  and 2f  such that 1 1( )T f g=  and 2 2( )T f g= , then since 

1 2 1 2 1 2( ) ( ) ( )T f f T f T f g g+ = + = + , it follows that 1 2f f+  is a solution to 1 2( )T f g g= + . In fact, the same 
reason shows that if 1 1( )T f g=  and 2 2( )T f g= , then 1 1 2 2c f c f+  will be a solution of 1 1 2 2( )T f c g c g= + . 

Example: Find a particular solution to the ODE 2 23 2 5 tx x x e t−+ + = +   
Solution: We have already solved 23 2 5 tx x x e−+ + =   to get a solution 2

1( ) 5 tx t te−= − . We can solve 
23 2x x x t+ + =   using undetermined coefficients and a solution of the form 2( )x t at bt c= + + . This gives 

2 2 22 3(2 ) 2( ) 2 (6 2 ) (2 3 2 )a at b at bt c at a b t a b c t+ + + + + = + + + + + = , so 
1
2

3
2

7
4

2 1
6 2 0

2 3 2 0

aa
a b b

a b c c

==      + = ⇒ = −   
   + + = =   

. So 

2
2

7
4

31
2 2( )x t t t= − + . Therefore the desired solution is 2 2

1 2
7
4

31
2 2( ) ( ) 5 tx t x t te t t−+ = − + − + . 

Next time we’ll look at time invariant linear operators and how we can use this property to find solutions, and 
we’ll develop the method of variation of parameters for finding particular solutions in the case of higher order 
linear differential equations. We’ll also look at the interesting case of resonance where the frequency of a 
sinusoidal input matches the natural frequency of a harmonic oscillator. 

Notes by Robert Winters 


