
Section 5. Graphing Systems

5A. The Phase Plane

5A-1. Find the critical points of each of the following non-linear autonomous systems.

a)
x′ = x2 − y2

y′ = x− xy
b)

x′ = 1− x+ y

y′ = y + 2x2

5A-2. Write each of the following equations as an equivalent first-order system, and find
the critical points.

a) x′′ + a(x2 − 1)x′ + x = 0 b) x′′ − x′ + 1− x2 = 0

5A-3. In general, what can you say about the relation between the trajectories and the
critical points of the system on the left below, and those of the two systems on the right?

x′ = f(x, y)

y′ = g(x, y)
a)

x′ = −f(x, y)

y′ = −g(x, y)
b)

x′ = g(x, y)

y′ = −f(x, y)

5A-4. Consider the autonomous system

x′ = f(x, y)

y′ = g(x, y)
; solution : x =

(
x(t)
y(t)

)
.

a) Show that if x1(t) is a solution, then x2(t) = x1(t − t0) is also a solution. What is
the geometric relation between the two solutions?

b) The existence and uniqueness theorem for the system says that if f and g are contin-
uously differentiable everywhere, there is one and only one solution x(t) satisfying a given
initial condition x(t0) = x0.

Using this and part (a), show that two trajectories cannot intersect anywhere.

(Note that if two trajectories intersect at a point (a, b), the corresponding solutions x(t)
which trace them out may be at (a, b) at different times. Part (a) shows how to get around
this difficulty.)

5B. Sketching Linear Systems

5B-1. Follow the Notes (GS.2) for graphing the trajectories of the system

{
x′ = −x

y′ = −2y .

a) Eliminate t to get one ODE
dy

dx
= F (x, y). Solve it and sketch the solution curves.

b) Solve the original system (by inspection, or using eigenvalues and eigenvectors),
obtaining the equations of the trajectories in parametric form: x = x(t), y = y(t). Using
these, put the direction of motion on your solution curves for part (a). What new trajectories
are there which were not included in the curves found in part (a)?

c) How many trajectories are needed to cover a typical solution curve found in part (a)?
Indicate them on your sketch.
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d) If the system were x′ = x, y′ = 2y instead, how would your picture be modified?
(Consider both parts (a) and (b).)

5B-2. Answer the same questions as in 5B-1 for the system x′ = y, y′ = x. (For part
(d), use −y and −x as the two functions on the right.)

5B-3. Answer the same question as in 5B-1a,b for the system x′ = y, y′ = −2x.

For part (b), put in the direction of motion on the curves by making use of the vector
field corresponding to the system.

5B-4. For each of the following linear systems, carry out the graphing program in Notes
GS.4; that is,

(i) find the eigenvalues of the associated matrix and from this determine the geometric
type of the critical point at the origin, and its stability;

(ii) if the eigenvalues are real, find the associated eigenvectors and sketch the corre-
sponding trajectories, showing the direction of motion for increasing t; then draw in some
nearby trajectories;

(iii) if the eigenvalues are complex, obtain the direction of motion and the approximate
shape of the spiral by sketching in a few vectors from the vector field defined by the system.

a)
x′ = 2x− 3y

y′ = x− 2y
b)

x′ = 2x

y′ = 3x+ y
c)

x′ = −2x− 2y

y′ = −x− 3y

d)
x′ = x− 2y

y′ = x+ y
e)

x′ = x+ y

y′ = −2x− y

5B-5. For the damped spring-mass system modeled by the ODE

mx′′ + cx′ + kx = 0, m, c, k > 0 ,

a) write it as an equivalent first-order linear system;

b) tell what the geometric type of the critical point at (0, 0) is, and determine its stability,
in each of the following cases. Do it by the methods of Sections GS.3 and GS.4, and check
the result by physical intuition.

(i) c = 0 (ii) c ≈ 0; m, k ≫ 1. (iii) Can the geometric type be a saddle? Explain.

5C. Sketching Non-linear Systems

5C-1. For the following system, the origin is clearly a critical point. Give its geometric
type and stability, and sketch some nearby trajectories of the system.

x′ = x− y + xy

y′ = 3x− 2y − xy

5C-2. Repeat 5C-1 for the system

{
x′ = x+ 2x2 − y2

y′ = x− 2y + x3
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5C-3. Repeat 5C-1 for the system

{
x′ = 2x+ y + xy3

y′ = x− 2y − xy

5C-4. For the following system, carry out the program outlined in Notes GS.6 for sketching
trajectories — find the critical points, analyse each, draw in nearby trajectories, then add
some other trajectories compatible with the ones you have drawn; when necessary, put in a
vector from the vector field to help.

x′ = 1− y

y′ = x2 − y2

5C-5. Repeat 5C-4 for the system

{
x′ = x− x2 − xy

y′ = 3y − xy − 2y2

5D. Limit Cycles

5D-1. In Notes LC, Example 1,

a) Show that (0, 0) is the only critical point (hint: show that if (x, y) is a non-zero
critical point, then y/x = −x/y; derive a contradiction).

b) Show that (cos t, sin t) is a solution; it is periodic: what is its trajectory?

c) Show that all other non-zero solutions to the system get steadily closer to the solution
in part (b). (This shows the solution is an asymptotically stable limit cycle, and the only
periodic solution to the system.)

5D-2. Show that each of these systems has no closed trajectories in the region R (this is
the whole xy-plane, except in part (c)).

a)
x′ = x+ x3 + y3

y′ = y + x3 + y3
b)

x′ = x2 + y2

y′ = 1 + x− y
c)

x′ = 2x+ x2 + y2

y′ = x2 − y2

R = half-plane x < −1

d)
x′ = ax+ bx2 − 2cxy + dy2

y′ = ex+ fx2 − 2bxy + cy2
:

find the condition(s) on the six constants that

guarantees no closed trajectories in the xy-plane

5D-3. Show that Lienard’s equation (Notes LC, (6)) has no periodic solution if either

a) u(x) > 0 for all x b) v(x) > 0 for all x .

(Hint: consider the corresponding system, in each case.)

5D-4.* a) Show van der Pol’s equation (Notes LC.4) satisfies the hypotheses of the
Levinson-Smith theorem (this shows it has a unique limit cycle).

b) The corresponding system has a unique critical point at the origin; show this and
determine its geometric type and stability. (Its type depends on the value of the parameter).



4 18.03 EXERCISES

5D-5.* Consider the following system (where r =
√

x2 + y2):
x′ = −y + xf(r)

y′ = x+ yf(r)

a) Show that if f(r) has a positive zero a, then the system has a circular periodic solution.

b) Show that if f(r) is a decreasing function for r ≈ a, then this periodic solution is
actually a stable limit cycle. (Hint: how does the direction field then look?)

5E. Structural stability; Volterra’s Principle

5E-1. Each of the following systems has a critical point at the origin. For this critical point,
find the geometric type and stability of the corresponding linearized system, and then tell
what the possibilities would be for the corresponding critical point of the given non-linear
system.

a) x′ = x− 4y − xy2, y′ = 2x− y + x2y

b) x′ = 3x− y + x2 + y2, y′ = −6x+ 2y + 3xy

5E-2. Each of the following systems has one critical point whose linearization is not
structurally stable. In each case, sketch several pictures showing the different ways the
trajectories of the non-linear system might look.

Begin by finding the critical points and determining the type of the corresponding lin-
earized system at each of the critical points.

a) x′ = y, y′ = x(1− x)

b) x′ = x2 − x+ y, y′ = −yx2 − y

5E-3. The main tourist attraction at Monet Gardens is Pristine Acres, an expanse covered
with artfully arranged wildflowers. Unfortunately, the flower stems are the favorite food of
the Kandinsky borer; the flower and borer populations fluctuate cyclically in accordance
with Volterra’s predator-prey equations. To boost the wildflower level for the tourists, the
director wants to fertilize the Acres, so that the wildflower growth will outrun that of the
borers.

Assume that fertilizing would boost the wildflower growth rate (in the absence of borers)
by 25 percent. What do you think of this proposal?

Using suitable units, let x be the wildflower population and y be the borer population.

Take the equations to be x′ = ax − pxy, y′ = −by + qxy, where a, b, p, q are
positive constants.
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