
18.03 EXERCISES

1. First-order ODE’s

1A. Introduction; Separation of Variables

1A-1. Verify that each of the following ODE’s has the indicated solutions (ci, a are con-
stants):

a) y′′ − 2y′ + y = 0, y = c1e
x + c2xe

x

b) xy′ + y = x sinx, y =
sinx+ a

x
− cosx

1A-2. On how many arbitrary constants (also called parameters) does each of the following
families of functions depend? (There can be less than meets the eye. . . ; a, b, c, d, k are
constants.)

a) c1e
kx b) c1e

x+a c) c1 + c2 cos 2x+ c3 cos
2 x d) ln(ax+ b) + ln(cx+ d)

1A-3. Write down an explicit solution (involving a definite integral) to the following
initial-value problems (IVP’s):

a) y′ =
1

y2 lnx
, y(2) = 0 b) y′ =

yex

x
, y(1) = 1

1A-4. Solve the IVP’s (initial-value problems):

a) y′ =
xy + x

y
, y(2) = 0 b)

du

dt
= sin t cos2 u, u(0) = 0

1A-5. Find the general solution by separation of variables:

a) (y2 − 2y) dx+ x2dy = 0 b) x
dv

dx
=

√
1− v2

c) y′ =

(
y − 1

x+ 1

)2

d)
dx

dt
=

√
1 + x

t2 + 4

1B. Standard First-order Methods

1B-1. Test the following ODE’s for exactness, and find the general solution for those which
are exact.

a) 3x2y dx+ (x3 + y3) dy = 0 b) (x2 − y2) dx+ (y2 − x2) dy = 0

c) veuvdu+ yeuvdv = 0 d) 2xy dx− x2dy = 0

1B-2. Find an integrating factor and solve:

a) 2x dx+
x2

y
dy = 0 b) y dx− (x+ y) dy = 0, y(1) = 1

c) (t2 + 4) dt+ t dx = x dt d) u(du− dv) + v(du+ dv) = 0. v(0) = 1
1
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1B-3. Solve the homogeneous equations

a) y′ =
2y − x

y + 4x
b)

dw

du
=

2uw

u2 − w2
c) xy dy − y2dx = x

√
x2 − y2 dx

1B-4. Show that a change of variable of the form u =
y

xn
turns y′ =

4 + xy2

x2y
into an

equation whose variables are separable, and solve it.

(Hint: as for homogeneous equations, since you want to get rid of y and y′, begin by
expressing them in terms of u and x.)

1B-5. Solve each of the following, finding the general solution, or the solution satisfying
the given initial condition.

a) xy′ + 2y = x b)
dx

dt
− x tan t =

t

cos t
, x(0) = 0

c) (x2 − 1)y′ = 1− 2xy d) 3v dt = t(dt− dv), v(1) = 1
4

1B-6. Consider the ODE
dx

dt
+ax = r(t), where a is a positive constant, and lim

t→∞
r(t) = 0.

Show that if x(t) is any solution, then lim
t→∞

x(t) = 0. (Hint: use L’Hospital’s rule.)

1B-7. Solve y′ =
y

y3 + x
. Hint: consider

dx

dy
.

1B-8. The Bernoulli equation. This is an ODE of the form y′+p(x)y = q(x)yn, n 6= 1.

Show it becomes linear if one makes the change of dependent variable u = y1−n.

(Hint: begin by dividing both sides of the ODE by yn .)

1B-9. Solve these Bernoulli equations using the method decribed in 1B-8:

a) y′ + y = 2xy2 b) x2y′ − y3 = xy

1B-10. The Riccati equation. After the linear equation y′ = A(x) + B(x) y, in a sense
the next simplest equation is the Riccati equation

y′ = A(x) +B(x)y + C(x)y2,

where the right-hand side is now a quadratic function of y instead of a linear function. In
general the Riccati equation is not solvable by elementary means. However,

a) show that if y1(x) is a solution, then the general solution is

y = y1 + u,

where u is the general solution of a certain Bernoulli equation (cf. 1B-8).

b) Solve the Riccati equation y′ = 1− x2 + y2 by the above method.

1B-11. Solve the following second-order autonomous equations (“autonomous” is an im-
portant word; it means that the independent variable does not appear explicitly in the
equation — it does lurk in the derivatives, of course.)

a) y′′ = a2y b) yy′′ = y′2 c) y′′ = y′(1 + 3y2), y(0) = 1, y′(0) = 2
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1B-12. For each of the following, tell what type of ODE it is — i.e., what method you

would use to solve it. (Don’t actually carry out the solution.) For some, there are several

methods which could be used.

1. (x3 + y) dx+ x dy = 0 2.
dy

dt
+ 2ty − e−t = 0

3. y′ =
x2 − y2

5xy
4. (1 + 2p) dq + (2− q) dp = 0

5. cosx dy = (y sinx+ ex) dx 6. x(tan y)y′ = −1

7. y′ =
y

x
+

1

y
8.

dv

du
= e2u+3v

9. xy′ = y + xey/x 10. xy′ − y = x2 sinx

11. y′ = (x+ ey)−1 12. y′ +
2y

x
− y2

x
= 0

13.
dx

dy
= −x

(
2x2y + cos y

3x2y2 + sin y

)
14. y′ + 3y = e−3t

15. x
dy

dx
− y =

√
x2 + y2 16.

y′ − 1

x2
= 1

17. xy′ − 2y + y2 = x4 18. y′′ =
y(y + 1)

y′

19. t
ds

dt
= s(1− ln t+ ln s) 20.

dy

dx
=

3− 2y

2x+ y + 1

21. x2y′ + xy + y2 = 0 22. y′ tan(x+ y) = 1− tan(x+ y)

23. y ds− 3s dy = y4 dy 24. du = −1 + u cos2 t

t cos2 t
dt

25. y′ + y2 + (2x+ 1)y + 1 + x+ x2 = 0 26. y′′ + x2y′ + 3x3 = sinx

1C. Graphical and Numerical Methods

1C-1. For each of the following ODE’s, draw a direction field by using about five isoclines;
the picture should be square, using the intervals between−2 and 2 on both axes. Then sketch
in some integral curves, using the information provided by the direction field. Finally, do
whatever else is asked.

a) y′ = −y

x
; solve the equation exactly and compare your integral curves with the

correct ones.

b) y′ = 2x+ y ; find a solution whose graph is also an isocline, and verify this fact
analytically (i.e., by calculation, not from a picture).

c) y′ = x− y ; same as in (b).

d) y′ = x2 + y2 − 1

e) y′ =
1

x+ y
; use the interval −3 to 3 on both axes; draw in the integral curves

that pass respectively through (0, 0), (−1, 1), (0,−2). Will these curves cross the line
y = −x− 1? Explain by using the Intersection Principle (Notes G, (3)).
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1C-2. Sketch a direction field, concentrating on the first quadrant, for the ODE

y′ =
−y

x2 + y2
.

Explain, using it and the ODE itself how one can tell that the solution y(x) satisfying the
initial condition y(0) = 1

a) is a decreasing function for y > 0;
b) is always positive for x > 0 .

1C-3. Let y(x) be the solution to the IVP y′ = x− y, y(0) = 1.

a) Use the Euler method and the step size h = .1 to to find an approximate value of
y(x) for x = .1, .2, .3 . (Make a table as in notes G).

Is your answer for y(.3) too high or too low, and why?

b) Use the Modified Euler method (also called Improved Euler, or Heun’s method) and
the step size h = .1 to determine the approximate value of y(.1) . Is the value for y(.1) you
found in part (a) corrected in the right direction — e.g., if the previous value was too high,
is the new one lower?

1C-4. Use the Euler method and the step size .1 on the IVP y′ = x+ y2, y(0) = 1, to
calculate an approximate value for the solution y(x) when x = .1, .2, .3 . (Make a table as
in Notes G.) Is your answer for y(.3) too high or too low?

1C-5. Prove that the Euler method converges to the exact value for y(1) as the progressively
smaller step sizes h = 1/n, n = 1, 2, 3, . . . are used, for the IVP

y′ = x− y, y(0) = 1 .

(First show by mathematical induction that the approximation to y(1) gotten by using the
step size 1/n is

yn = 2(1− h)n − 1 + nh .

The exact solution is easily found to be y = 2e−x + x− 1 .)

1C-6. Consider the IVP y′ = f(x), y(0) = y0.

We want to calculate y(2nh), where h is the step size, using n steps of the Runge-Kutta
method.

The exact value, by Chapter D of the notes, is y(2nh) = y0 +

∫ 2nh

0

f(x) dx .

Show that the value for y(2nh) produced by Runge-Kutta is the same as the value for
y(2nh) obtained by using Simpson’s rule to evaluate the definite integral.

1C-7. According to the existence and uniqueness theorem, under what conditions on
a(x), b(x), and (x) will the IVP

a(x) y′ + b(x) y = c(x), y(x0) = y0

have a unique solution in some interval [x0 − h, x0 + h] centered around x0?
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1D. Geometric and Physical Applications

1D-1. Find all curves y = y(x) whose graphs have the indicated geometric property. (Use
the geometric property to find an ODE satisfied by y(x), and then solve it.)

a) For each tangent line to the curve, the segment of the tangent line lying in the first
quadrant is bisected by the point of tangency.

b) For each normal to the curve, the segment lying between the curve and the x-axis las
constant length 1.

c) For each normal to the curve, the segment lying between the curve and the x-axis is
bisected by the y-axis.

d) For a fixed a, the area under the curve between a and x is proportional to y(x)−y(a).

1D-2. For each of the following families of curves,
(i) find the ODE satisfied by the family (i.e., having these curves as its integral curves);
(ii) find the orthogonal trajectories to the given family;
(iii) sketch both the original family and the orthogonal trajectories.

a) all lines whose y-intercept is twice the slope
b) the exponential curves y = cex

c) the hyperbolas x2 − y2 = c
d) the family of circles centered on the y-axis and tangent to the x-axis.

1D-3. Mixing A container holds V liters of salt solution. At time t = 0, the salt
concentration is c0 g/liter. Salt solution having concentration c1 is added at the rate of k
liters/min, with instantaneous mixing, and the resulting mixture flows out of the container
at the same rate. How does the salt concentration in the tank vary with time?

Let x(t) be the amount of salt in the tank at time t. Then c(t) =
x(t)

V
is the

concentration of salt at time t.
a) Write an ODE satisfied by x(t), and give the initial condition.
b) Solve it, assuming that it is pure water that is being added. (Lump the constants by

setting a = k/V .)
c) Solve it, assuming that c1 is constant; determine c(t) and find lim

t→∞
c(t). Give an

intuitive explanation for the value of this limit.
d) Suppose now that c1 is not constant, but is decreasing exponentially with time:

c1 = c0e
−αt, α > 0.

Assume that a 6= α (cf. part (b)), and determine c(t), by solving the IVP. Check your
answer by putting α = 0 and comparing with your answer to (c).

1D-4. Radioactive decay A radioactive substance A decays into B, which then further
decays to C.

a) If the decay constants of A and B are respectively λ1 and λ2 (the decay constant
is by definition (ln 2/half-life)), and the initial amounts are respectively A0 and B0, set up
an ODE for determining B(t), the amount of B present at time t, and solve it. (Assume
λ1 6= λ2.)

b) Assume λ1 = 1 and λ2 = 2. Tell when B(t) reaches a maximum.

1D-5. Heat transfer According to Newton’s Law of Cooling, the rate at which the
temperature T of a body changes is proportional to the difference between T and the external
temperature.

At time t = 0, a pot of boiling water is removed from the stove. After five minutes, the
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water temperature is 80oC. If the room temperature is 20oC, when will the water have
cooled to 60oC? (Set up and solve an ODE for T (t).)

1D-6. Motion A mass m falls through air under gravity. Find its velocity v(t) and its
terminal velocity (that is, lim

t→∞
v(t)) assuming that

a) air resistance is kv (k constant; this is valid for small v);

b) air resistance is kv2 (k constant; this is valid for high v).

Call the gravitational constant g. In part (b), lump the constants by introducing a

parameter a =
√

gm/k .

1D-7. A loaded cable is hanging from two points of support, with Q the lowest point on
the cable. The portion QP is acted on by the total load W on it, the constant tension TQ

at Q, and the variable tension T at P . Both W and T vary with the point P .

Let s denote the length of arc QP .

a) Show that
dx

TQ
=

dy

W
=

ds

T
.

b) Deduce that if the cable hangs under its own weight, and
y(x) is the function whose graph is the curve in which the cable
hangs, then

dy
dx

Q

P
ds

x

y

(i) y′′ = k
√

1 + y′2, k constant

(ii) y =
√
s2 + c2 + c1, c, c1 constants

c) Solve the suspension bridge problem: the cable is of negligible weight, and the loading
is of constant horizontal density. (“Solve” means: find y(x).)

d) Consider the “Marseilles curtain” problem: the cable is of negligible weight, and
loaded with equally and closely spaced vertical rods whose bottoms lie on a horizontal line.

( Take the x-axis as the line, and show y(x) satisfies the ODE y′′ = k2y.)

1E. First-order autonomous ODE’s

1E-1. For each of the following autonomous equations dx/dt = f(x), obtain a qualitative
picture of the solutions as follows:

(i) draw horizontally the axis of the dependent variable x, indicating the critical points
of the equation; put arrows on the axis indicating the direction of motion between the
critical points; label each critical point as stable, unstable, or semi-stable. Indicate where
this information comes from by including in the same picture the graph of f(x), drawn in
dashed lines;

(ii) use the information in the first picture to make a second picture showing the tx-
plane, with a set of typical solutions to the ODE: the sketch should show the main qualitative
features (e.g., the constant solutions, asymptotic behavior of the non-constant solutions).

a) x′ = x2 + 2x
b) x′ = −(x− 1)2

c) x′ = 2x− x2

d) x′ = (2− x)3
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