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Concourse 18.03 – Fourier III 
In this lecture we’ll apply Fourier series to solve linear time-invariant ODEs with 
periodic inputs – specifically the case of harmonic response. We’ll also find ways to 
manipulating known Fourier series to obtain new Fourier series representations of 
periodic functions. 

Harmonic Response to Periodic Inputs 
If we couple the Fourier series representation of a periodic input with our linearity 
methods, we can produce series representations of solutions to linear time-independent 
(LTI) differential equations. 

Example: Find the general solution to the differential equation 4 ( )x x sq t+ = , where 
( )sq t  is the square-wave function. 

Solution: The system corresponds to a harmonic oscillator. The characteristic polynomial 
is 2( ) 4p s s= +  with characteristic roots 2s i= ± , and the homogeneous solutions are of 
the form 1 2( ) cos 2 sin 2hx t c t c t= + . 

For a particular solution, we use linearity. Using the Fourier series representation 

0

4 sin(2 1)( ) 2 1n

n tsq t nπ
∞

=

+
+∑ , we can individually solve the ODE 4 sin(2 1)x x n t+ = +  for 

each n and then use linearity to reassemble the overall solution (superposition). To do this 
we use complex replacement and solve (2 1)4 i n tz z e ++ =  using the Exponential Response 
Formula (ERF), and then extract the imaginary part. 
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We have 2( (2 1)) 4 (2 1)p i n n+ = − + , so 
(2 1)

2 2

cos(2 1) sin(2 1)
4 (2 1) 4 (2 1)

i n te n t i n t
n n

+ + + +
=

− + − +
 is a 

solution, and we extract its imaginary part to get 2

sin(2 1)
4 (2 1)

n t
n
+

− +
. 

Using linearity for the ODE 
0

4 sin(2 1)4 2 1n

n tx x nπ
∞

=

+
+ = +∑ , we appropriately scale the 

individual terms and sum to get the particular solution 2
0

4 sin(2 1)( )
(2 1)[4 (2 1) ]p

n

n tx t
n nπ

∞

=

+
=

+ − +∑ .  

Note: You will want to be especially careful to make sure any indexed quantities are 
inside the summation. Only actual constants can be factored outside the summation. 

If we expand this to show the first few terms, we have 

1 1 1 1 1
3 15 105 315 693

4( ) sin sin 3 sin 5 sin 7 sin 9px t t t t t tπ= − − − − −   . 

Note how the amplitudes of the higher frequencies decrease rapidly. As always, the 
general solution is ( ) ( ) ( )h px t x t x t= + . 

More generally, we could solve 2 ( )x x sq tω+ =  to get 

2 2
0

4 sin(2 1)( )
(2 1)[ (2 1) ]p

n

n tx t
n nπ ω

∞

=

+
=

+ − +∑ . 
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This will usually yield a convergent series, but we have a problem in the case where ω  is 
an odd integer since one term of the series will “blow up” in that case. This is a case of 
resonance and we’ll look at that case shortly. 

Another Fourier Series calculation 

Problem: Find the Fourier series for the function 0 [ ,0)( ) [0, )
tf t t t

π
π

∈ − =  ∈ 
, extended 

periodically for all t. 
Solution: This function is neither symmetric nor antisymmetric, so we have to compute 
all the Fourier coefficients. 

2

0 0 0
1 1 1

2 2( ) ta f t dt t dt
ππ π

π
π

π π π−
 = = = = ∫ ∫  

20
1 1

2
0  even

( )cos cos  oddn
n

n
a f t nt dt t nt dt n

π π

ππ π
π−

 
= = =  − 
∫ ∫  

           after a little integration by parts. 
1

0
1 1 ( 1)( )sin sin

n

nb f t nt dt t nt dt n
π π

ππ π

+

−

−
= = =∫ ∫  after a little integration by parts. 

You should carry out these calculations as an exercise. 

So 
1

2
 odd 1

2
4

cos ( 1)( ) sin
n

n n

ntf t ntnn
π

π

+∞

=

 − − +   
   

∑ ∑  
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Curiosity: Note that for this function 0t =  is a point of continuity and (0) 0f = , so 

2
 odd

2
4

1 0
n n

π
π

 − = 
 

∑ . 

Therefore 2

2
 odd

1 1 1 1
9 25 49 81 8

1 1
n n

π  = + + + + + = 
 

∑   (which we have previously shown). 

Tips & Tricks – Manipulation of Fourier series 
Different period: We developed our Fourier series representation for functions with a 
standard period 2π  and fundamental interval [ , ]π π− . If we instead have a function ( )f t  
with period 2L  and fundamental interval [ , ]L L− , we can simply change variables to 
produce the corresponding Fourier series in this case. We let t

Lu π=  (so Lut π= ) and 

define ( )( ) Lug u f π=  with period 2π  and fundamental interval [ , ]π π− . The Fourier 

series for ( )g u  is then:       ( )0

1
( ) cos sin

2 n n
n

ag u a nu b nu
∞

=

+ +∑  

If we then use the substitution t
Lu π=  (and Ldu dtπ= ), we’ll have  

0
1 1 1 1( ) ( ) ( ) ( )

L L L

L L L
t

L L L La g u dt g dt f u du f t dt
π

π
π

π − − − −
= = = =∫ ∫ ∫ ∫ , 

1 1 1( ) cos ( ) cos( ) ( ) cos( )
L L

n L L
t n t n t

L L L L La g u nu du g dt f t dt
π

π
π π π

π − − −
= = =∫ ∫ ∫ , 

1 1 1( )sin ( )sin( ) ( )sin( )
L L

n L L
t n t n t

L L L L Lb g u nu du g dt f t dt
π

π
π π π

π − − −
= = =∫ ∫ ∫ , and we can 

write: 
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( )0

1
( ) ( ) cos( ) sin( )

2 n n
n

n t n t n t
L L L

af t g a bπ π π
∞

=

= + +∑  

Fourier series can be differentiated or integrated term-by-term to produce other 
Fourier series: 

Example: If we start with 
 odd

sin41 [ ,0)( ) 1 [0, ) n

nt
n

tsq t t π
π
π

− ∈ − =  + ∈ 
∑  and integrate term-by-

term, we get 2

 odd

cos4( )
n

nt
nF t Cπ − +∑ . If we also insist that (0) 0F =  and that ( )F t  be 

continuous, we get that ( )2

2

 odd

4 1 4
8 2 0

n
n C C Cπ π

π π
 − + = − + = − + = 
 
∑ , so 2C π= . This 

gives 2

 odd

cos4
2

[ ,0)( ) [0, ) n

nt
n

t tF t t t t
π

π
π
π

− ∈ − = = − + ∈ 
∑ , extended periodically for all t, a 

“sawtooth function”. 

This series could also have been calculated directly using the formulas for the Fourier 
coefficients and some integration by parts. 

Fourier series can be scaled, shifted, etc. to produce other Fourier series 

Example #1: Start with 
 odd

sin41 [ ,0)( ) 1 [0, ) n

nt
n

tsq t t π
π
π

− ∈ − =  + ∈ 
∑ . 

Then 
 odd

sin40 [ ,0)1 ( ) 12 [0, ) n

nt
n

tsq t t π
π
π

∈ − + = + ∈ 
∑ . 
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So [ ]
 odd

sin1 1 2
2 2

0 [ ,0)1 ( ) 1 [0, ) n

nt
n

tsq t t π
π
π

∈ − + = + ∈ 
∑ , extended periodically for all t, a 

different sort of square-wave function. 

Example #2: Find the Fourier series for the function ( ) cos( 3)f t t π= − . 
Solution: This function is periodic with period 2π . There’s no need to consider the 
formulas for the Fourier coefficients. Simply note that 

31
2 2( ) cos( 3) cos cos( 3) sin sin( 3) cos sinf t t t t t tπ π π= − = + = + . 

Harmonic response with resonance 
One of the more interesting aspects of using Fourier Series is analyzing how a linear 
time-independent ODE with a periodic signal yields a response that exhibits resonance. 
The basic idea is that if we expand a periodic signal in a Fourier Series, it’s sometimes 
the case that a single term in the series may be responsible for resonance. The signal may 
be composed of a whole range of frequencies, but one of them may produce resonance 
that may be the dominant feature of the response. 

Suppose we wish to solve the ODE 2

0

4 sin(2 1)( ) 2 1n

n tx x sq t nπω
∞

=

+
+ = +∑

 , where ( )sq t  is 

the square-wave function. We previously observed that this would yield the series 
solution: 

2 2
0

4 sin(2 1)( )
(2 1)[ (2 1) ]p

n

n tx t
n nπ ω

∞

=

+
=

+ − +∑  
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There is a catch, however. All of the terms in the series make sense unless ω  is an odd 
integer. If this is the case, then all but one of the terms in the series will continue to make 
sense, but we’ll have to treat the one term where 2 1nω = +  differently. Let’s consider a 
specific example. 

Example: Find a particular solution to the ODE 9 ( )x x sq t+ = . 

In this case, all of the terms in the above series are as stated, but we have to deal with the 
1n =  term separately since 3ω = . For this one term we separately solve the ODE 

4
39 sin 3x x tπ+ = . If we use complex replacement and later extract the imaginary part, 

we’ll be solving the ODE 34
39 itz z eπ+ = . Since the characteristic polynomial is 

2( ) 9p s s= +  and 3s i=  is a characteristic root, we must use the Resonant Response 

Formula, i.e. 
34

3
(3 )

itte
z

p i
π=
′

. Since ( ) 2p s s′ =  and (3 ) 6p i i′ = , we have the (complex) 

solution 
34

3 2 2
9 9( )[cos3 sin 3 ] [sin 3 cos3 ]

6

itte
z t i t i t t t i t

i
π

π π= = − + = − . Extracting the 

imaginary part gives 3
2

9( ) cos3x t t tπ= − . This term can then be added into the previous 
sum to replace the 1n =  term. Note, however, that this term is oscillatory but its 
amplitude grows linearly in time. This is exactly the sort of thing we would expect when 
the system has resonance – even if it is caused by just one resonant frequency embedded 
among others. 

Notes by Robert Winters 


