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Periodic Inputs and Fourier Series 
The solution of an ODE of the form [ ( )] ( ) cosp D x t a kt=  or [ ( )] ( ) sinp D x t a kt=  is now 
relatively straightforward through the use of complex replacement, the Exponential 
Response Formula, and, when needed, the Resonant Response Formula. How might we 
solve an ODE of the form [ ( )] ( ) ( )p D x t f t=  where ( )f t  is some other periodic function 
such as: 

 
or 

 
The way we’ll handle this is to successively approximate any such periodic function as a 
sum of trigonometric functions, solve term-by-term, and then reassemble a solution using 
linearity (superposition). The approximation method involves Fourier Series. 
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Definition: A function ( )f t  is called periodic with period T if ( ) ( )f t nT f t+ =  for all t 
and all integers n. We say that T is the base period if it is the least such 0T > . 

Examples: The functions sin t  and cos t  are both periodic with base period 2π . The 
functions sin tω  and cos tω  are both periodic with base period 2π

ω . 

Note: Any constant function is also periodic, but with no base period. 

For the sake of simplicity, we’ll begin by considering periodic functions with base period 
2π . We will later rescale to adapt our methods to other base periods. Our methods will 
be based on the following theorem: 

Theorem (Fourier): Suppose a function ( )f t  is periodic with base period 2π  and 
continuous except for a finite number of jump discontinuities. Then ( )f t  may be 
represented by a (convergent) Fourier Series: 
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The numbers 0 1 1{ , , , , , , }n na a b a b   are called the Fourier coefficients of the function 
( )f t . 

This representation is an equality at all points of continuity of the function ( )f t . At any 
point of discontinuity t a= , the series converges to the average of ( )f a−  and ( )f a+ , i.e. 
the value 1

2 [ ( ) ( )]f a f a− ++ . 

Note: (a) If ( )f t  is an even function [ ( ) ( )f t f t− =  for all t], then 0nb =  for all n by 
basic facts from calculus. 

(b) If ( )f t  is an odd function [ ( ) ( )f t f t− = −  for all t], then 0 0a =  and 0na =  for 
all n by basic facts from calculus. 

Example (Square wave function): 1 [ ,0)( ) ( ) 1 [0, )
tf t sq t t

π
π

− ∈ − = =  + ∈ 
, extended 

periodically for all t. 
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This function is periodic (with period 2π ) and antisymmetric, i.e. an odd function. 
Therefore 0 0a =  and 0na =  for all n. We calculate 
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So 
 odd

sin4 4 1 1
53( ) [sin sin 3 sin 5 ]

n

nt
nsq t t t tπ π= + + +∑  . 

The nature of the convergence of this Fourier series toward the square wave function can 
be seen by graphing the partial sums: 
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