
V2. Gradient Fields
and Exact Differentials

1. Criterion for gradient fields.

Let F = M(x, y) i + N(x, y) j be a two-dimensional vector field, where M and N are
continuous functions. There are three equivalent ways of saying that F is conservative, i.e.,
a gradient field:

(1) F = ∇f ⇔

∫ Q

P

F · dr is path-independent ⇔

∮

C

F · dr = 0 for any closed C

Unfortunately, these equivalent formulations don’t give us any effective way of deciding
if a given field F is a conservative field or not. However, if we assume that F is not just
continuous but is even continuously differentiable (meaning: Mx, My, Nx, Ny all exist and
are continuous), then there is a simple and elegant criterion for deciding whether or not F

is a gradient field in some region.

Criterion. Let F = M i + N j be continuously differentiable in a region D. Then, in
D,

(2) F = ∇f for some f(x, y) ⇒ My = Nx .

Proof. Since F = ∇f , this means

M = fx and N = fy . Therefore,

My = fxy and Nx = fyx .

But since these two mixed partial derivatives are continuous (since My and Nx are, by
hypothesis), a standard 18.02 theorem says they are equal. Thus My = Nx. �

This theorem may be expressed in a slightly different form, if we define the scalar function
called the two-dimensional curl of F by

(3) curl F = Nx − My .

Then (2) becomes

(2′) F = ∇f ⇒ curl F = 0 .

This criterion allows us to test F to see if it is a gradient field. Naturally, we would also
like to know that the converse is true: if curl F = 0, then F is a gradient field. As we shall
see, however, this requires some additional hypotheses on the region D. For now, we will
assume D is the whole plane. Then we have

Converse to Criterion. Let F = M i + N j be continuously differentiable for all x, y.

(4) My = Nx for all x, y ⇒ F = ∇f for some differentiable f and all x, y.

The proof of (4) will be postponed until we have more technique. For now we will illustrate
the use of the criterion and its converse.
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Example 1. For which value(s), if any of the constants a, b will axy i + (x2 + by) j be
a gradient field?

Solution. The partial derivatives are continuous for all x, y and My = ax, Nx = 2x.

Thus by (2) and (4), F = ∇f ⇔ a = 2; b is arbitrary.

Example 2. Are the fields F =
x i + y j

x2 + y2
, G =

−y i + x j

x2 + y2
conservative?

Solution. We have (the second line follows from the first by interchanging x and y):

∂

∂x

(

x

x2 + y2

)

=
−x2 + y2

(x2 + y2)2
;

∂

∂x

(

y

x2 + y2

)

=
2xy

(x2 + y2)2
;

∂

∂y

(

y

x2 + y2

)

=
x2 − y2

(x2 + y2)2
;

∂

∂y

(

x

x2 + y2

)

=
2yx

(x2 + y2)2
;

from this, we see immediately that

∂

∂y

(

x

x2 + y2

)

=
∂

∂x

(

y

x2 + y2

)

;
∂

∂y

(

−
y

x2 + y2

)

=
∂

∂x

(

x

x2 + y2

)

;

the two equations in the last line show respectively that F and G satisfy the criterion (2).
However, neither field is defined at (0, 0), so that the converse (4) is not applicable. So the
question cannot be decided just on the basis of (2) and (4). In fact, it turns out that F is a
gradient field, since one can check that

F = ∇ ln
√

x2 + y2 = ∇ ln r .

On the other hand, G is not conservative, since if C is the unit circle x = cos t, y = sin t,
we have

∮

C

G · dr =

∮

C

−y dx + xdy

x2 + y2
=

∫ 2π

0

sin2 t dt + cos2 t dt

sin2 t + cos2 t
= 2π 6= 0.

We will return later on in these notes to this example.

2. Finding the potential function.

Example 2 above raises the question of how we found the function 1
2 ln(x2 + y2). More

generally, if we know that F = ∇f — for example if curl F = 0 in the whole xy-plane —
how do we find the function f(x, y)? There are two methods; some students prefer one,
some the other.

Method 1. Suppose F = ∇f . By the Fundamental Theorem for Line Integrals,

(5)

∫ (x,y)

(x0,y0)

F · dr = f(x, y) − f(x0, y0) .

Read from left to right, (5) gives us an easy way of finding the line integral in terms of
f(x, y). But read right to left, it gives us a way of finding f(x, y) by using the line integral:

(5′) f(x, y) =

∫ (x,y)

(x0,y0)

F · dr + c .
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(Here c is an arbitrary constant of integration; as (5′) shows, c = f(x0, y0).)

Remark. It is common to refer to f(x, y) as the (mathematical) potential function.
The potential function used in physics is −f(x, y). The negative sign is used by physicists
so that the potential difference will represent work done against the field F, rather than
work done by the field, as the convention is in mathematics.

Example 3. Let F = (x + y2) i + (2xy + 3y2) j . Verify that F satisfies the Criterion
(2), and use method 1 above to find the potential function f(x, y).

Solution. We verify (2) immediately:
∂(y2)

∂y
= 2y =

∂(2xy)

∂x
.

We use (5′). The point (x0, y0) can be any convenient starting point; (0, 0) is the usual
choice, if the integrand is defined there. (We will subscript the variables to avoid confusion
with the variables of integration, but you don’t have to.) By (5′),

(6) f(x1, y1) =

∫ (x1,y1)

(0,0)

(x + y2) dx + (2xy + 3y2) dy .

Since the integral is path-independent, we can choose any path we like.
The usual choice is the one on the right, as it simplifies the computations.
(Most of what follows you can do mentally, with a little practice.)

(x  , y  )

x1

1 1

1
C

C 2

On C1, we have y = 0, dy = 0, so the integral on C1 becomes

∫ x1

0

xdx =
1

2
x2

1.

On C2, we have x = x1, dx = 0, so the integral is

∫ y1

0

(2x1y + 3y2) dy = x1y
2
1 + y3

1 .

Adding the integrals on C1 and C2 to get the integral along the entire path, and dropping
the subscripts, we get by (6) and (5′)

f(x, y) =
1

2
x2 + xy2 + y3 + c .

(The constant of integration is added by (5′), since the choice of starting point was arbitrary.
You should always confirm the answer by checking that ∇f = F.) �

Method 2. Once again suppose F = ∇f , that is M i + N j = fx i + fy j . It follows
that

(7) fx = M and fy = N .

These are two equations involving partial derivatives, which we can solve simultaneously by
integration. We illustrate using the previous example: F = (x + y2, 2xy + 3y2).

Solution by Method 2. Using the first equation in (7),

∂f

∂x
= x + y2. Hold x fixed, integrate with respect to y:

f =
1

2
x2 + y2x + g(y). where g(y) is an arbitrary function of y.(8)
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To find g(y), we calculate
∂f

∂y
two ways:

∂f

∂y
= 2yx + g′(y) by (8), while

∂f

∂y
= 2xy + 3y2 from (7), second equation.

Comparing these two expressions, we see that g′(y) = 3y2, so g(y) = y3 + c. Putting it all
together, using (8), we get f(x, y) = 1

2 x2 + y2x + y3 + c, as before. �

In the first method, the answer is written down immediately as a line integral; the rest of
the work is in evaluating the integral, which goes quickly, since on a horizontal or vertical
path either dx = 0 or dy = 0.

In the second method, the answer is obtained by an algorithm involving several steps
which should be carried out in the right order.

The first method has the advantage of reminding you each time how f(x, y) is defined and
what it means, facts of theoretical and practical importance. The second method has the
advantage of requiring no knowledge of line integrals, which makes it popular with students;
on the other hand, when done in three dimensions, the bookkeeping gets more complicated,
whereas in the first method it does not; overall, the first method is faster, provided you are
confident enough to do some of the work mentally.

3. Exact differentials.

The formal expressions M(x, y) dx + N(x, y) dy which have appeared as the integrands
in our line integrals are called differentials. In some applications, most notably thermody-
namics, one usually works directly with the differential M dy + N dy and its line integral
∫

M dx + N dy, without considering or using the associated vector field F = M i + N j .
Therefore it is important to have the results about gradient fields in this section translated
into the language of differentials. We do this now.

If f(x, y) is a differentiable function, its total differential df (or simply differential) is by
definition the expression

(9) df = fxdx + fydy .

For example, if f(x, y) = x2y3, then d(x2y3) = 2xy3dx + 3x2y2dy .

We call the differential M dx + N dy exact, in a region D where M and N are defined,
if it is the total differential of some function f(x, y) in this region, i.e., if in D,

(10) M = fx and N = fy, for some f(x, y).

From this we see that the relation between differentials and vector fields is

M dx + N dy is exact ⇔ M i + N j is a gradient field

M dx + N dy = df ⇔ M i + N j = ∇f .

In this language, the criterion (2) and its partial converse (4) become the
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Exactness Criterion. Assume M and N are continuously differentiable in a region D

of the plane. Then in this region,

M dx + N dy exact ⇒ My = Nx ;(11)

if D is the whole xy-plane, My = Nx ⇒ M dx + N dy exact.(12)

If the exactness criterion shows that M dx + N dy is exact, then the function f(x, y) may
be found by either of the two methods previously described.

Exercises: Section 4C.


