
LS. Least Squares Interpolation

1. The least-squares line.

Suppose you have a large number n of experimentally determined points, through which
you want to pass a curve. There is a formula (the Lagrange interpolation formula) producing
a polynomial curve of degree n−1 which goes through the points exactly. But normally one
wants to find a simple curve, like a line, parabola, or exponential, which goes approximately
through the points, rather than a high-degree polynomial which goes exactly through them.
The reason is that the location of the points is to some extent determined by experimental
error, so one wants a smooth-looking curve which averages out these errors, not a wiggly
polynomial which takes them seriously.

In this section, we consider the most common case — finding a line which
goes approximately through a set of data points.

Suppose the data points are

(x1, y1), (x2, y2), . . . , (xn, yn)

and we want to find the line

(1) y = ax + b

which “best” passes through them. Assuming our errors in measurement are distributed
randomly according to the usual bell-shaped curve (the so-called “Gaussian distribution”),
it can be shown that the right choice of a and b is the one for which the sum D of the
squares of the deviations

(2) D =

n
∑

i=1

(

yi − (axi + b)
)2

is a minimum. In the formula (2), the quantities in parentheses (shown by
dotted lines in the picture) are the deviations between the observed values
yi and the ones axi + b that would be predicted using the line (1).
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The deviations are squared for theoretical reasons connected with the assumed Gaussian
error distribution; note however that the effect is to ensure that we sum only positive
quantities; this is important, since we do not want deviations of opposite sign to cancel each
other out. It also weights more heavily the larger deviations, keeping experimenters honest,
since they tend to ignore large deviations (“I had a headache that day”).

This prescription for finding the line (1) is called the method of least squares, and the
resulting line (1) is called the least-squares line or the regression line.

To calculate the values of a and b which make D a minimum, we see where the two partial
derivatives are zero:

(3)

∂D

∂a
=

n
∑

i=1

2(yi − axi − b)(−xi) = 0

∂D

∂b
=

n
∑

i=1

2(yi − axi − b)(−1) = 0 .
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These give us a pair of linear equations for determining a and b, as we see by collecting
terms and cancelling the 2’s:

(4)

(

∑

x2

i

)

a +

(

∑

xi

)

b =
∑

xiyi

(

∑

xi

)

a + n b =
∑

yi .

(Notice that it saves a lot of work to differentiate (2) using the chain rule, rather than first
expanding out the squares.)

The equations (4) are usually divided by n to make them more expressive:

(5)
s̄ a + x̄ b =

1

n

∑

xiyi

x̄ a + b = ȳ ,

where x̄ and ȳ are the average of the xi and yi, and s̄ =
∑

x2

i
/n is the average of the squares.

From this point on use linear algebra to determine a and b. It is a good exercise to see
that the equations are always solvable unless all the xi are the same (in which case the best
line is vertical and can’t be written in the form (1)).

In practice, least-squares lines are found by pressing a calculator button, or giving a
MatLab command. Examples of calculating a least-squares line are in the exercises in your
book and these notes. Do them from scratch, starting from (2), since the purpose here is to
get practice with max-min problems in several variables; don’t plug into the equations (5).
Remember to differentiate (2) using the chain rule; don’t expand out the squares, which
leads to messy algebra and highly probable error.

2. Fitting curves by least squares.

If the experimental points seem to follow a curve rather than a line, it might make more
sense to try to fit a second-degree polynomial

(6) y = a0 + a1x + a2x
2

to them. If there are only three points, we can do this exactly (by the Lagrange interpolation
formula). For more points, however, we once again seek the values of a0, a1, a2 for which
the sum of the squares of the deviations

(7) D =

n
∑

1

(

yi − (a0 + a1xi + a2x
2

i
)
)2

is a minimum. Now there are three unknowns, a0, a1, a2. Calculating (remember to use the
chain rule!) the three partial derivatives ∂D/∂ai, i = 0, 1, 2, and setting them equal to zero
leads to a square system of three linear equations; the ai are the three unknowns, and the
coefficients depend on the data points (xi, yi). They can be solved by finding the inverse
matrix, elimination, or using a calculator or MatLab.

If the points seem to lie more and more along a line as x → ∞, but lie on one side of the
line for low values of x, it might be reasonable to try a function which has similar behavior,
like

(8) y = a0 + a1x + a2
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and again minimize the sum of the squares of the deviations, as in (7). In general, this
method of least squares applies to a trial expression of the form

(9) y = a0f0(x) + a1f1(x) + . . . + arfr(x),

where the fi(x) are given functions (usually simple ones like 1, x, x2, 1/x, ekx, etc. Such an
expression (9) is called a linear combination of the functions fi(x). The method produces
a square inhomogeneous system of linear equations in the unknowns a0, . . . , ar which can
be solved by finding the inverse matrix to the system, or by elimination.

The method also applies to finding a linear function

(10) z = a1 + a2x + a3y

to fit a set of data points

(11) (x1, y1, z1), . . . , (xn, yn, zn) .

where there are two independent variables x and y and a dependent variable z (this is
the quantity being experimentally measured, for different values of (x, y)). This time after
differentiation we get a 3 × 3 system of linear equations for determining a1, a2, a3 .

The essential point in all this is that the unknown coefficients ai should occur linearly

in the trial function. Try fitting a function like cekx to data points by using least squares,
and you’ll see the difficulty right away. (Since this is an important problem — fitting an
exponential to data points — one of the Exercises explains how to adapt the method to this
type of problem.)

Exercises: Section 2G


