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Math 18.02 – Notes on the gradients, Chain Rule, implicit differentiation, and higher order derivatives 
These notes focus on four things: (a) the application of gradients to find normal vectors to curves and surfaces; 
(b) the generalization of the Basic Chain Rule to more general compositions of functions of several variables;  
(c) a new and more general approach to implicit differentiation; and (d) the definition and meaning of 2nd 
derivatives of functions of several variables. 

Rate of change of a function along a parameterized curve and the Basic Chain Rule 
We showed in the previous lecture that if a function ( , )f x y  is given and a parameterized curve is described by 

( ) ( ), ( )t x t y t=r , then we can determine the rate of change of the function ( , )f x y  as we travel along this 
parameterized curve by the Basic Chain Rule. 
If we think of this as a composition, we have: 

( ( ), ( )) ( ( ), ( ))t x t y t f x t y t→ →  

We showed that [ ]( ( ), ( ))d
dt

f dx f dyf x t y t
x dt y dt
∂ ∂

= +
∂ ∂

. This is the Basic Chain Rule. 

The same construction can be done with a differentiable function ( , , )f x y z  and a parameterized curve 

( ) ( ), ( ), ( )t x t y t z t=r  to give the rate of change [ ]( ( ), ( ), ( ))d
dt

f dx f dy f dzf x t y t z t
x dt y dt z dt
∂ ∂ ∂

= + +
∂ ∂ ∂

 as the Basic 

Chain Rule in this context. 

In either case (or in an even more general context, we see that df f
dt

= ∇ ⋅ v
d

 where the gradient vector 

,f ff
x y
∂ ∂

∇ =
∂ ∂

d

 in the former case and , ,f f ff
x y z
∂ ∂ ∂

∇ =
∂ ∂ ∂

d

 in the latter case. It gives a vector at every point, i.e. 

a vector field. 

We investigated the geometry of the gradient and found that at every point the gradient vector will be 
perpendicular to the level set of the given function passing through any given point. This gives us a remarkably 
simple way to determine normal vectors to curves and surfaces and, with this, a simple way to determine 
equations for tangent lines to curves and tangent planes to surfaces. 

Example 1: Find an equation for the tangent line to the curve defined by the equation 2 32 8x y xy+ =  
at the point (2,1) . 

Solution: If we let 2 3( , ) 2f x y x y xy= + , then this curve is, in fact, the 8f =  level set (level curve or contour). 
(You may want to verify that (2,1) 8f = .). We calculate the gradient vector 3 2 22 2 , 6f xy y x xy∇ = + +

d

. At the 

point (2,1)  this gives the vector (2,1) 6,16 2 3,8f∇ = =
d

, and we know that this must be perpendicular to the 

8f =  level set at this point. We can therefore take 3,8=n  as a normal vector to the line tangent to this level 

set. Using the relation 0( ) 0⋅ − =n x x , we have 3,8 2, 1 0x y⋅ − − =  or 3( 2) 8( 1) 0x y− + − =  or 3 8 14x y+ = . 

Example 2: Find an equation for the tangent plane to the surface defined by the equation 32 10xyz xz+ =  
at the point (2,3,1) . 
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Solution: If we let 3( , , ) 2f x y z xyz xz= + , then this surface is, in fact, the 10f =  level set (level surface). (You 
may want to verify that (2,3,1) 10f = .). We calculate the gradient vector 3 22 , , 6f yz z xz xy xz∇ = + +

d

. At the 

point (2,3,1)  this gives the vector (2,3,1) 5,2,18f∇ =
d

, and we know that this must be perpendicular to the 

10f =  level set at this point. We can therefore take 5, 2,18=n  as a normal vector to the plane tangent to this 

level set. Using the relation 0( ) 0⋅ − =n x x , we have 5,2,18 2, 3, 1 0x y z⋅ − − − =  or 
5( 2) 2( 3) 18( 1) 0x y z− + − + − =  or 5 2 18 34x y z+ + = . 

Note: In order to use this method to find normal vectors to curves or surfaces, you may have to transpose any 
variables in a given equation to one side of the equation leaving only a constant on the other side before 
defining a function by the variable expression on one side of this equation. 

The General Chain Rule 
In general, the chain rule is an algebraic rule that describes how to calculate rates of change of functions built 
from other functions through composition. For example, in a first semester calculus course we learn that if 

( )y y u=  and ( )u u x= , then we can calculate dy
dx

 by the chain rule: dy
dx

dy
du

du
dx

= . In a multivariable setting, we 

might have ( , )z z x y=  and ( ), ( )x x t y y t= = . We then have dz z dx z dy
dt x dt y dt

∂ ∂
= +
∂ ∂

 by the basic chain rule. 

The chain rule gets more interesting when you apply it to situations where there are more input variables and 
output variables. For example, let us suppose we have a situation where there are two parameters, s and t, and 

that for any s and t we have equations giving 
( , )
( , )
( , )

x x s t
y y s t
z z s t

=  = 
 = 

. Let us further suppose that for any choices of the 

variables x, y, and z we have two other variables, u and v, defined by equations 
u u x y z
v v x y z
=
=









( , , )
( , , )

. 

In this case we can think of this functionally as: 
( , ) ( , , ) ( , )G Fs t x y z u v→ → . 

 
If we vary s only (holding t constant) and only focus on how the output variable u will change, the Basic Chain 

Rule gives that u u x u y u z
s x s y s z s
∂ ∂ ∂ ∂ ∂ ∂ ∂

= + +
∂ ∂ ∂ ∂ ∂ ∂ ∂

. Note that all of the derivatives are now partial derivatives. 

We can do the same by selectively varying either s or t and focusing selectively on the output variables u or v. 
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We calculate:            

u u x u y u z u u x u y u z
s x s y s z s t x t y t z t
v v x v y v z v v x v y v z
s x s y s z s t x t y t z t

∂ ∂ ∂ ∂ ∂ ∂ ∂ ∂ ∂ ∂ ∂ ∂ ∂ ∂
= + + = + +

∂ ∂ ∂ ∂ ∂ ∂ ∂ ∂ ∂ ∂ ∂ ∂ ∂ ∂
∂ ∂ ∂ ∂ ∂ ∂ ∂ ∂ ∂ ∂ ∂ ∂ ∂ ∂

= + + = + +
∂ ∂ ∂ ∂ ∂ ∂ ∂ ∂ ∂ ∂ ∂ ∂ ∂ ∂

 

There is nothing especially difficult about these seemingly complicated relationships. We simply selectively 
focus on a particular output variable (u or v), and then calculate partial derivatives (with respect to either s or t) 
by treating the other one as though constant. Unlike the Basic Chain Rule, all derivatives are now partial 
derivatives because all functions are functions of several variables. In each case there are as many terms as there 
are variables in the middle of the composition. 

These equations can be organized into a statement about the Jacobian matrices of the two functions and of their 
composition. A Jacobian matrix may be thought of simply as an array of (partial) derivatives of the various 
output variables with respect to the various input variables, where the outputs are listed from top to bottom and 
the inputs are listed from left to right. If you know about matrix multiplication, we have: 

u u
s t
v v
s t

∂ ∂ 
 ∂ ∂ ∂ ∂ 
∂ ∂ 

 = 

u u u
x y z
v v v
x y z

∂ ∂ ∂ 
 ∂ ∂ ∂ 
∂ ∂ ∂ 
 ∂ ∂ ∂ 

x x
s t
y y
s t
z z
s t

∂ ∂ 
 ∂ ∂ ∂ ∂ 
∂ ∂ 
 ∂ ∂
 ∂ ∂ 

 or, more succinctly, F G F G=J J J


. 

Note: It’s worth mentioning that the rows of each matrix look like gradient vectors, and the columns look like 
velocity vectors. This view of the Chain Rule can be explained in terms of how incremental vectors or tangent 
vectors in the original domain are transformed to their counterparts in the image spaces. It is really a statement 
of how the composition differentiable functions can be approximated by a composition of the linear 
transformations defined by the respective Jacobian matrices. 

To picture what this is telling us, let’s specifically look at the situation where φ and θ represent latitude and 
longitude with the minor change that latitude will be measured from the north pole as 0°, the equator as 90°, and 
the south pole as 180°. We can then describe a sphere of radius R by the parametric equations  

x R
y R
z R

=
=
=

















cos sin
sin sin
cos

θ φ
θ φ
φ

. 

Let us further suppose that the variables u and v measure, for example, temperature and barometric pressure 
at any point ( , , )x y z  in R3 and, in particular, at points on this parametrized sphere in R3. 

x

y

z

u

v

φ

θ
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We might ask questions about how temperature would vary as we change latitude or longitude, or how 
barometric pressure would vary as we change latitude or longitude. These are the quantities in the Jacobian 

matrix F G

u u

v v

∂ ∂ 
 ∂φ ∂θ=  
∂ ∂ 
 ∂φ ∂θ 

J


. The rows of the Jacobian matrix F

u u u
x y z
v v v
x y z

∂ ∂ ∂ 
 ∂ ∂ ∂ =
∂ ∂ ∂ 
 ∂ ∂ ∂ 

J  are just the gradient vectors 

(in R3) of the temperature and barometric pressure functions. (Note that these are functions defined on R3 and 
not just on the spherical surface.) 

The two columns of the Jacobian matrix JG = 

x x

y y

z z

 ∂ ∂
 ∂φ ∂θ 
∂ ∂ 
 ∂φ ∂θ
 ∂ ∂ 
∂φ ∂θ  

 represent “velocity” vectors tangent to the longitudes 

(φ varying) and latitudes (θ varying). These two column vectors are tangent to curves lying in the sphere and are 
therefore tangent to the sphere. They are, essentially, the “south vector” and the “east vector” at any point of the 
sphere (except at the poles). You might further observe that their cross product will be normal to this spherical 
surface at any given point – a fact which will be useful later in this course when we look at surface integrals. 

The two columns of the Jacobian matrix F G

u u

v v

∂ ∂ 
 ∂φ ∂θ=  
∂ ∂ 
 ∂φ ∂θ 

J


 represent vectors in the (u, v) plane and indicate the 

directions of change if we slightly vary the latitude or the longitude. 

Implicitly Defined Functions and Implicit Differentiation 
Often it is the case that an equation (or several equations) relate some variables and we wish to consider one 
variable (or several) as depending on the rest. For example, given the equation of a circle 

2 2 16x y+ =  

we may wish to consider ( )y y x= . If we solve explicitly, we get either 216y x= −  or 216y x= − −  whose 
graphs are, respectively, the upper and lower semicircles. Though we could calculate the derivatives directly, 
there is an alternate approach. We can think of x as a parameter and use it to parametrize either one of the 
semicircles as ( , ( ))x x y x→ , where the dependence of y on x is defined implicitly by the given curve (semi-
circle). If we let 2 2( , )F x y x y= + , then we can view the circle as just the 16F =  contour, or level set, of the 
function F. Composing these functions, we have: 

( , ( )) ( , ( )) constantx x y x F x y x→ → =  

Applying the chain rule (and using xF  and yF  to denote the partial derivatives of F), we have: 

( , ( )) 1 0x y
d dyF x y x F F dxdx

= + =  
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Here we used the fact that 1dx
dx =  and that the composite function was constant everywhere on this level set. 

Solving for dy
dx , we get that x

y

Fdy
dx F

= − . So, as long as we avoid those places where 0yF =  (where the two 

semicircles meet), we have a valid formula for calculating dy
dx . In the above example, this gives 

2
2

dy x x
ydx y= − = − . This may be used for either the upper or the lower semicircle. 

Note: The expression x

y

Fdy
dx F

= −  can also be derived geometrically by noting that ,x yF F F∇ =
d

 will, at any 

point, give a vector perpendicular to the level set, so the slope of the normal line will be y

x

F
F

 and the slope of the 

tangent line will therefore be given by its negative reciprocal, i.e. x

y

Fdy
dx F

= − . 

This formulation will be valid whenever we have a relation of the form ( , ) constantF x y = , where F is a 
differentiable function and where we can consider ( )y y x=  as being implicitly defined by the equation. The 
only exception is at those points where 0yF = , i.e. at points where the tangent line to the relation is vertical. 

This same approach can be used for relations of the form ( , , ) constantF x y z = , where we may wish to consider 
one of the variables as being dependent on the others. For example, if we choose to think of ( , )z z x y=  defined 
implicitly by the given relation, then it is useful to consider x and y as parameters and to formulate the situation 
as 

( , ) ( , , ( , )) ( , , ( , )) constantx y x y z x y F x y z x y→ → =  

Here we can think of the relation as a surface in R3, and what this is saying is that by choosing ( , )x y  we may 
find one point (or several points) on the graph. We can apply the chain rule to calculate the partial derivatives of 
the composition with respect to the parameters x and y. What makes this a bit tricky is the fact that x and y are 
playing dual roles as parameters and as coordinates in R3. Nonetheless, we have 

( , , ( , )) 1 0 0

( , , ( , )) 0 1 0

x y z

x y z

zF x y z x y F F F xx
zF x y z x y F F F yy

∂ ∂= ⋅ + ⋅ + =
∂∂

∂ ∂= ⋅ + ⋅ + =
∂∂

    (*) 

which enable us to solve for x

z

Fz
x F
∂

= −
∂

 and y

z

Fz
y F
∂

= −
∂

. These expressions will be valid wherever F is 

differentiable and where 0zF ≠ . It should be relatively clear that this same formulation could be done for 
relations with any number of variables and would give analogous expressions for the partial derivatives of the 
implicitly defined functions. 
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Note: The equations (*) above can also be interpreted in terms of dot products and perpendicularity. They give 
that , , 1,0, 0x y z x

z
xF F F F∂
∂⋅ = ∇ ⋅ =v

d

 and , , 0,1, 0x y z y
z
yF F F F∂
∂⋅ = ∇ ⋅ =v

d

 where you should recognize the 

vectors xv  and yv  as tangent vectors to the ( , )z z x y=  graph surface. Once again, we see that the gradient 

vector F∇
d

 is perpendicular to tangent vectors to the ( , , ) constantF x y z =  level surface and therefore 
perpendicular to this level surface at any given point on the surface. 

Note: Had we instead chosen to define ( , )x x y z=  as being defined implicitly by this relation, we would have 

similarly obtained the expressions y

x

Fx
y F
∂

= −
∂

 and z

x

Fx
z F
∂

= −
∂

, and these expressions will be valid wherever F 

is differentiable and where 0xF ≠ . We might also have chosen to define ( , )y y x z=  as being defined implicitly 

by this relation, and we would then obtain the expressions x

y

Fy
x F
∂

= −
∂

 and z

y

Fy
z F
∂

= −
∂

. These expressions will 

be valid wherever F is differentiable and where 0yF ≠ . 

Second derivatives and higher order derivatives of functions of several variables 
If we think of partial derivatives as rates of change, then we can say that for a function ( , )f x y , 

x
ff
x
∂

= =
∂

 “rate of change of the values of f with respect to (increasing) x” ↔  “x-slope” 

y
ff
y
∂

= =
∂

 “rate of change of the values of f with respect to (increasing) y” ↔  “y-slope” 

Continuing with these interpretations, we can define (and interpret) 2nd derivatives as follows: 

2

2xx
f ff

x x x
∂ ∂ ∂ = = = ∂ ∂ ∂ 

 “rate of change of the x-slopes with respect to (increasing) x” 

2

xy
f ff

y x y x
∂ ∂ ∂ = = = ∂ ∂ ∂ ∂ 

 “rate of change of the x-slopes with respect to (increasing) y” 

2

yx
f ff

x y x y
 ∂ ∂ ∂

= = = ∂ ∂ ∂ ∂ 
 “rate of change of the y-slopes with respect to (increasing) x” 

2

2yy
f ff

y y y
 ∂ ∂ ∂

= = = ∂ ∂ ∂ 
 “rate of change of the y-slopes with respect to (increasing) y” 

If we organize these 2nd derivatives into a 2 2×  matrix, we call this the Hessian matrix of this function: 

xx xy
f

yx yy

f f
H f f

 
=  
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The first and last of these 2nd derivatives are relatively simple to interpret as concavities of the cross-sectional 
curves in the graph surface – just as was the case with 2nd derivatives of functions of a single variable. The 
“mixed partial derivatives” xyf  and yxf  are a little more difficult to interpret. You may find it helpful to 
imagine a graph surface and use a straight object to represent a tangent vector and imagine how the x-slope 
might change as you move laterally in the y-direction, e.g. if there was a little twist in the graph surface. This is 
what the mixed partial derivative xyf  would measure. Similarly, you can interpret yxf  by imagining how the y-
slope might change as you move laterally in the x-direction. In fact, these two mixed partial derivatives are 
generally equal, though this is certainly not obvious. Indeed, this is the essence of Clairaut’s Theorem. 

Clairaut’s Theorem: If a function of two or more variables is differentiable and if its first and second 
derivatives are continuous, then mixed partial derivatives are equal. 

In the case of a function of two variables, this simply means that xy yxf f= . 

For functions of three variables, we can define 9 second derivatives and organize them into a 3 3×  Hessian 
matrix: 

xx xy xz

f yx yy yz

zx zy zz

f f f
H f f f

f f f

 
 =  
  

 

Clairaut’s Theorem in this case gives that xy yxf f= , xz zxf f= , and yz zyf f= . 

In either this case or the previous case, Clairaut’s Theorem means that the Hessian matrix is a symmetric matrix. 

We could also consider higher order derivatives, and Clairaut’s Theorem would continue to apply (assuming all 
derivatives are continuous functions. For example, for a function ( , )f x y , there would be 8 third partial 
derivatives: xxxf , xxyf , xyxf , yxxf , yyxf , yxyf , xyyf , and yyyf . However, by Clairaut’s Theorem, we would have 

xxy xyx yxxf f f= =  and xyy yxy yyxf f f= = . Try calculating some of these to see Clairaut’s Theorem in action. 

For a function of three variables ( , , )f x y z , there would be 3 first partial derivatives, 9 second partial 
derivatives, and 27 third partial derivatives, but by Clairaut’s Theorem the mixed partial derivatives would be 
equal. 

Example: For the function 2 3( , ) 2f x y x y xy= + , the two first partial derivatives are just the components of the 
gradient vector 3 2 2, 2 2 , 6x yf f f xy y x xy∇ = = + +

d

. The Hessian matrix will then be: 

2

2
2 2 6

2 6 12
xx xy

f
yx yy

f f y x yH f f x y xy
   += =   +  

 

Example: For the function 3( , , ) 2f x y z xyz xz= + , the three first partial derivatives are just the components of 
the gradient vector 3 2, , 2 , , 6x y zf f f f yz z xz xy xz∇ = = + +

d

. The Hessian matrix will then be: 

2

2

0 6
0

6 12

xx xy xz

f yx yy yz

zx zy zz

f f f z y z
H f f f z x

y z x xzf f f

   +
   = =   

+     

 

Notes by Robert Winters 


