5. Triple Integrals

5A. Triple integrals in rectangular and cylindrical coordinates
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¢) In cylindrical coordinates, with the polar coordinates r and 6
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d) The sphere has equation 2% + y? + 22 = 2, or 2 + 22 = 2 in cylindrical L
coordinates.
The cone has equation 22 = 72, or z = r. The circle in which they intersect has

a radius r found by solving the two equations z = r and 22+72 = 2 simultaneously;
eliminating z we get 2 = 1, so r = 1. Putting it all together, we get
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5A-3 By symmetry, T =y = Z, so it suffices to calculate just one of these, say z. We have
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Outer: —5;(1 — x)ﬂo = 57 = Z moment.

mass of D = volume of D = %(base)(height) = % -1-1=1.

Therefore z = i / % = i; this is also Z and g, by symmetry.

h
5A-4 Placing the cone as shown, its equation in cylindrical coordinates is z = r
and the density is given by § = r. By the geometry, its projection onto the zy-plane y
is the interior R of the origin-centered circle of radius h. vertical cross-section
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b) By symmetry, the center of mass is on the z-axis, so we only have to compute its
z-coordinate, Z.
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5A-5 Position S so that its base is in the xy-plane and its diagonal D lies along the z-axis
(the y-axis would do equally well). The octants divide S into four tetrahedra, which by
symmetry have the same moment of inertia about the x-axis; we calculate the one in the
first octant. (The picture looks like that for 5A-3, except the height is 2.)

The top of the tetrahedron is a plane intersecting the x- and y-axes at 1, and the z-axis
at 2. Its equation is therefore x + y + %z =1.

The square of the distance of a point (x,y, z) to the axis of rotation (i.e., the z-axis) is
given by y? + z2. We therefore get:
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5A-6 Placing D so its axis lies along the positive z-axis and its base is the origin-centered
disc of radius a in the xy-plane, the equation of the hemisphere is z = \/a? — 22 — 32, or
z = v/a? — r? in cylindrical coordinates. Doing the inner and outer integrals mentally:
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The integral can be done using integration by parts (write the integrand r2 - rv/a2 — r2),
or by substitution; following the latter course, we substitute r = a sinu, dr = a cosu du, and
get (using the formulas at the beginning of exercises 3B)
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5A-7 The solid D is bounded below by z = z? 4+ y? and above by z = 2z. The main
problem is determining the projection R of D to the zy-plane, since we need to know this
before we can put in the limits on the iterated integral.

z

The outline of R is the projection (i.e., vertical shadow) of the curve
in which the paraboloid and plane intersect. This curve is made up of
the points in which the graphs of z = 2z and z = x? + y? intersect,

e., the simultaneous solutions of the two equations. To project the
curve, we omit the z-coordinates of the points on it. Algebraically, this :
amounts to solving the equations simultaneously by eliminating z from 2 X

the two equations; doing this, we get as the outline of R the curve cross-sectionof D viewof D along x axis
2?2 +9%2 =2z or, completing the square, (z —1)?+y? =1.

This is a circle of radius 1 and center at (1,0), whose polar equation is therefore r = 2 cos 6.

We use symmetry to calculate just the right half of D and double the answer:
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5B. Triple Integrals in spherical coordinates

5B-1 a) The angle between the central axis of the cone and any of the lines on the cone is

27 pm/4
7/4; the sphere is p = v/2; so the limits are (no integrand given):: / / / dp de db.
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b) The limits are (no integrand is given): / / / dpdeodo
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¢) To get the equation of the sphere in spherical coordinates, we note
that AOP is always a right triangle, for any position of P on the sphere.
Since AO = 2 and OP = p, we get according to the definition of the
cosine, cos ¢ = p/2, or p = 2cosp. (The picture shows the cross-section \
of the sphere by the plane containing P and the central axis AO.) cross-section

The plane z = 1 has in spherical coordinates the equation pcos¢ = 1, or p = seco.
It intersects the sphere in a circle of radius 1; this shows that 7/4 is the maximum value
of ¢ for which the ray having angle ¢ intersects the region.. Therefore the limits are (no

integrand is given):
27 pm/4  p2cos¢
/ / / dpdpdo.
sec ¢
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5B-2 Place the solid hemisphere D so that its central axis lies along the positive z-axis
and its base is in the xy-plane. By symmetry, £ = 0 and § = 0, so we only need z. The
integral for it is the product of three separate one-variable integrals, since the integrand is
the product of three one-variable functions and the limits of integration are all constants.
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Since the mass is gﬂa?’, we have finally z =

5B-3 Place the solid so the vertex is at the origin, and the central axis lies
along the positive z-axis. In spherical coordinates, the density is given by
0 = z = pcos ¢, and referring to the picture, we have
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5B-4 Place the sphere so its center is at the origin. In each case the iterated integral can be
expressed as the product of three one-variable integrals (which are easily calculated), since
the integrand is the product of one-variable functions and the limits are constants.
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Use the z-axis as diameter. The distance of a point from the z-axis is r = psin ¢.
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¢) Use the zy-plane and the upper solid hemisphere. The distance is z = p cos ¢.
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5C. Gravitational Attraction

5C-2 The top of the cone is given by z = 2; in spherical coordinates:
pcos ¢ = 2. Let a be the angle between the axis of the cone and any of its 2 /5
generators. The density 6 = 1. Since the cone is symmetric about its axis, a
the gravitational attraction has only a k-component, and is [ /A
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5C-3 Place the sphere as shown so that @) is at the origin. Since it is rotationally symmetric
about the z-axis, the force will be in the k-direction.

Inner:

Equation of sphere: p=2cos¢ Density: § = p~1/2
27 pm/2 p2cos¢
F, = G/ / / p*1/2 cos ¢sin ¢ dp d¢p db z
o Jo 0
2cos ¢
Inner: cos¢sin ¢ 2p1/2} =2v2 cos*? ¢ sin¢
0
/2
2 4+/2 4+/2 2
Middle: 2\/5{—5 cos®/? qb} = T\/_ Outer: QWGT\/_ = % TG, Q
0

5C-4 Referring to the figure, the total gravitational attraction (which is in the k direction,
by rotational symmetry) is the sum of the two integrals
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The two spheres are shown in cross-section. The spheres inter-
sect at the points where ¢ = 7/3.

The first integral respresents the gravitational attraction of the
top part of the solid, bounded below by the cone ¢ = 7/3 and _
above by the sphere p = 1.

The second integral represents the bottom part of the solid,
bounded below by the sphere p = 2 cos ¢ and above by the cone.




