
4. Line Integrals in the Plane

4A. Plane Vector Fields

4A-1

a) All vectors in the field are identical; continuously differentiable everywhere.
b) The vector at P has its tail at P and head at the origin; field is cont. diff. everywhere.
c) All vectors have unit length and point radially outwards; cont. diff. except at (0, 0).
d) Vector at P has unit length, and the clockwise direction perpendicular to OP .

4A-2 a) a i + b j b)
x i + y j

r2
c) f ′(r)

x i + y j

r

4A-3 a) i + 2 j b) −r(x i + y j ) c)
y i − x j

r3
d) f(x, y)( i + j )

4A-4 k · −y i + x j

r2

4B. Line Integrals in the Plane

4B-1

a) On C1: y = 0, dy = 0; therefore

∫

C1

(x2 − y) dx + 2xdy =

∫ 1

−1

x2 dx =
x3

3

]1

−1

=
2

3
.

On C2: y = 1− x2, dy = −2xdx;

∫

C2

(x2 − y) dx+ 2xdy =

∫ 1

−1

(2x2 − 1) dx− 4x2 dx

=

∫ 1

−1

(−2x2 − 1) dx = −
[

2

3
x3 + x

]1

−1

= −4

3
− 2 = −10

3
.

b) C: use the parametrization x = cos t, y = sin t; then dx = − sin t dt, dy = cos t dt
∫

C

xy dx− x2 dy =

∫ 0

π/2

− sin2 t cos t dt− cos2 t cos t dt = −
∫ 0

π/2

cos t dt = − sin t

]0

π/2

= 1.

c) C = C1 + C2 + C3; C1 : x = dx = 0; C2 : y = 1 − x; C3 : y = dy = 0
∫

C

y dx − xdy =

∫

C1

0 +

∫ 1

0

(1 − x)dx − x(−dx) +

∫

C3

0 =

∫ 1

0

dx = 1.

d) C : x = 2 cos t, y = sin t; dx = −2 sin t dt

∫

C

y dx =

∫ 2π

0

−2 sin2 t dt = −2π.

e) C : x = t2, y = t3; dx = 2t dt, dy = 3t2 dt
∫

C

6y dx + xdy =

∫ 2

1

6t3(2t dt) + t2(3t2 dt) =

∫ 2

1

(15t4) dt = 3t5
]2

1

= 3 · 31.

f)

∫

C

(x + y)dx + xy dy =

∫

C1

0 +

∫ 1

0

(x + 2)dx =
x2

2
+ 2x

]1

0

=
5

2
.

4B-2 a) The field F points radially outward, the unit tangent t to the circle is always
perpendicular to the radius; therefore F · t = 0 and

∫

C
F · dr =

∫

C
F · t ds = 0

b) The field F is always tangent to the circle of radius a, in the clockwise direction, and
of magnitude a. Therefore F = −at, so that

∫

C
F · dr =

∫

C
F · t ds = −

∫

C
a ds = −2πa2.

1
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4B-3 a) maximum if C is in the direction of the field: C =
i + j√

2

b) minimum if C is in the opposite direction to the field: C = − i + j√
2

c) zero if C is perpendicular to the field: C = ± i − j√
2

d) max =
√

2, min = −
√

2: by (a) and (b), for the max or min F and C have

respectively the same or opposite constant direction, so
∫

C
F · dr = ±|F| · |C| = ±

√
2.

4C. Gradient Fields and Exact Differentials

4C-1 a) F = ∇f = 3x2y i + (x3 + 3y2) j

b) (i) Using y as parameter, C1 is: x = y2, y = y; thus dx = 2y dy, and
∫

C1

F ·dr =

∫ 1

−1

3(y2)2y · 2y dy + [(y2)3 +3y2] dy =

∫ 1

−1

(7y6 +3y2) dy = (y7 + y3)
]1

−1
= 4.

b) (ii) Using y as parameter, C2 is: x = 1, y = y; thus dx = 0, and
∫

C2

F · dr =

∫ 1

−1

(1 + 3y2) dy = (y + y3)
]1

−1
= 4.

b) (iii) By the Fundamental Theorem of Calculus for line integrals,
∫

C

∇f · dr = f(B) − f(A).

Here A = (1,−1) and B = (1, 1), so that

∫

C

∇f · dr = (1 + 1) − (−1 − 1) = 4.

4C-2 a) F = ∇f = (xyexy + exy) i + (x2exy) j .

b) (i) Using x as parameter, C is: x = x, y = 1/x, so dy = −dx/x2, and so
∫

C

F · dr =

∫ 0

1

(e + e) dx + (x2e)(−dx/x2) = (2ex − ex)
]0

1
= −e.

b) (ii) Using the F.T.C. for line integrals,

∫

C

F ·dr = f(1, 1)−f(0,∞) = 0−e = −e.

4C-3 a) F = ∇f = (cosx cos y) i − (sin x sin y) j .

b) Since

∫

C

F · dr is path-independent, for any C connecting A : (x0, y0) to B : (x1, y1),

we have by the F.T.C. for line integrals,
∫

C

F · dr = sinx1 cos y1 − sin x0 cos y0

This difference on the right-hand side is maximized if sinx1 cos y1 is maximized, and
sin x0 cos y0 is minimized. Since | sin x cos y| = | sin x|| cos y| ≤ 1, the difference on the right
hand side has a maximum of 2, attained when sinx1 cos y1 = 1 and sinx0 cos y0 = −1.

(For example, a C running from (−π/2, 0) to (π/2, 0) gives this maximum value.)
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4C-5 a) F is a gradient field only if My = Nx, that is, if 2y = ay, so a = 2.

By inspection, the potential function is f(x, y) = xy2+x2+c; you can check that F = ∇f .

b) The equation My = Nx becomes ex+y(x+a) = xex+y+ex+y, which = ex+y(x+1).
Therefore a = 1.

To find the potential function f(x, y), using Method 2 we have

fx = eyex(x + 1) ⇒ f(x, y) = eyxex + g(y).

Differentiating, and comparing the result with N , we find

fy = eyxex + g′(y) = xex+y; therefore g′(y) = 0, so g(y) = c and f(x, y) = x ex+y + c.

4C-6 a) ydx − xdy is not exact, since My = 1 but Nx = −1.

b) y(2x + y) dx + x(2y + x) dy is exact, since My = 2x + 2y = Nx.

Using Method 1 to find the potential function f(x, y), we calculate the
line integral over the standard broken line path shown, C = C1 + C2.

C

(x ,y )1

C x1

1

11

2

f(x1, y1) =

∫

C

F · dr =

∫ (x1,y1)

(0,0)

y(2x + y) dx + x(2y + x) dy.

On C1 we have y = 0 and dy = 0, so

∫

C1

F · dr = 0.

On C2, we have x = x1 and dx = 0, so

∫

C2

F · dr =

∫ y1

0

x1(2y + x1) dx = x1y
2
1 + x2

1y1.

Therefore, f(x, y) = x2y + xy2; to get all possible functions, add +c .

4D. Green’s Theorem

4D-1 a) Evaluating the line integral first, we have C : x = cos t, y = sin t, so
∮

C

2y dx + xdy =

∫ 2π

0

(−2 sin2 t + cos2 t) dt =

∫ 2π

0

(1 − 3 sin2 t) dt = t − 3

(

t

2
− sin 2t

4

)]2π

0

= −π.

For the double integral over the circular region R inside the C, we have
∫ ∫

R

(Nx − My) dA =

∫ ∫

R

(1 − 2) dA = − area of R = −π.

b) Evaluating the line integral, over the indicated path C = C1 + C2 + C3 + C4,
∮

C

x2dx + x2dy =

∫ 2

0

x2dx +

∫ 1

0

4 dy +

∫ 0

2

x2dx +

∫ 0

1

0 dy = 4,

since the first and third integrals cancel, and the fourth is 0.

1

C4 C2R

1C

C3

2

For the double integral over the rectangle R,
∫ ∫

R

2xdA =

∫ 2

0

∫ 1

0

2xdydx = x2

]2

0

= 4.
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c) Evaluating the line integral over C = C1 + C2, we have

C1 : x = x, y = x2;

∫

C1

xy dx + y2dy =

∫ 1

0

x · x2dx + x4 · 2xdx =
x4

4
+

x6

3

]1

0

=
7

12

C2 : x = x, y = x;

∫

C2

xy dx + y2dy =

∫ 0

1

(x2dx + x2dx) =
2

3
x3

]0

1

= −2

3
.

Therefore,

∮

C

xy dx + y2dy =
7

12
− 2

3
= − 1

12
.

Evaluating the double integral over the interior R of C, we have
∫ ∫

R

−xdA =

∫ 1

0

∫ x

x2

−xdydx;

evaluating: Inner: −xy

]y=x

y=x2

= −x2 + x3; Outer: −x3

3
+

x4

4

]1

0

= −1

3
+

1

4
= − 1

12
.

4D-2 By Green’s theorem,

∮

C

4x3y dx + x4 dy =

∫ ∫

(4x3 − 4x3) dA = 0.

This is true for every closed curve C in the plane, since M and N have continuous
derivatives for all x, y.

4D-3 We use the symmetric form for the integrand since the parametrization of the curve
does not favor x or y; this leads to the easiest calculation.

Area =
1

2

∮

C

−y dx+xdy =
1

2

∫ 2π

0

3 sin4 t cos2 t dt+3 sin2 t cos4 t dt =
3

2

∫ 2π

0

sin2 t cos2 t dt

Using sin2 t cos2 t = 1
4 (sin 2t)2 = 1

4 · 1
2 (1 − cos 4t), the above =

3

8

(

t

2
− sin 4t

8

)2π

0

=
3π

8
.

4D-4 By Green’s theorem,

∮

C

−y3dx+x3dy =

∫ ∫

R

(3x2 +3y2) dA > 0, since the integrand

is always positive outside the origin.

4D-5 Let C be a square, and R its interior. Using Green’s theorem,

∮

C

xy2dx + (x2y + 2x) dy =

∫ ∫

R

(2xy + 2 − 2xy) dA =

∫ ∫

R

2 dA = 2(area of R).

4E. Two-dimensional Flux

4E-1 The vector F is the velocity vector for a rotating disc; it is at each point tangent to
the circle centered at the origin and passing through that point.

a) Since F is tangent to the circle, F · n = 0 at every point on the circle, so the flux is 0.

b) F = x j at the point (x, 0) on the line. So if x0 > 0, the flux at x0 has the same
magnitude as the flux at −x0 but the opposite sign, so the net flux over the line is 0.

c) n = − j , so F · n = x j · − j = −x. Thus

∫

F · n ds =

∫ 1

0

−xdx = −1

2
.
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4E-2 All the vectors of F have length
√

2 and point northeast. So the flux across a line
segment C of length 1 will be

a) maximal, if C points northwest;
b) minimal, if C point southeast;
c) zero, if C points northeast or southwest;
d) −1, if C has the direction and magnitude of i or − j ; the corresponding normal vectors

are then respectively − j and − i , by convention, so that F · n = ( i + j ) · − j = −1. or
( i + j ) · − i = −1.

e) respectively
√

2 and −
√

2, since the angle θ between F and n is respectively 0 and π,

so that respectively F · n = |F| cos θ = ±
√

2.

4E-3

∫

C

M dy − N dx =

∫

C

x2dy − xy dx =

∫ 1

0

(t + 1)22t dt − (t + 1)t2 dt

=

∫ 1

0

(t3 + 3t2 + 2t) dt =
t4

4
+ t3 + t2

]1

0

=
9

4
.

4E-4 Taking the curve C = C1 + C2 + C3 + C4 as shown,
∫

C

xdy − y dx =

∫

C1

0 +

∫ 1

0

−dx +

∫ 0

1

dy +

∫

C4

0 = −2.

(1,1)

1

1

C

C

C

C

1

2

3

4

4E-5 Since F and n both point radially outwards, F · n = |F| = am, at every point of the
circle C of radius a centered at the origin.

a) The flux across C is am · 2πa = 2πam+1.
b) The flux will be independent of a if m = −1.

4F. Green’s Theorem in Normal Form

4F-1 a) both are 0 b) div F = 2x + 2y; curl F = 0 c) div F = x + y; curl F = y − x

4F-2 a) div F = (−ωy)x + (ωx)y = 0; curl F = (ωx)x − (−ωy)y = 2ω.

b) Since F is the velocity field of a fluid rotating with constant angular velocity (like
a rigid disc), there are no sources or sinks: fluid is not being added to or subtracted from
the flow at any point.

c) A paddlewheel placed at the origin will clearly spin with the same angular velocity
ω as the rotating fluid, so by Notes V4,(11), the curl should be 2ω at the origin. (It is much
less clear that the curl is 2ω at all other points as well.)

4F-3 The line integral for flux is

∫

C

xdy − y dx; its value is 0 on any segment

of the x-axis since y = dy = 0; on the upper half of the unit semicircle (oriented
counterclockwise), F · n = 1, so the flux is the length of the semicircle: π. 1 1-

Letting R be the region inside C,

∫ ∫

R

div F dA =

∫ ∫

R

2 dA = 2(π/2) = π.

4F-4 For the flux integral

∮

C

x2dy − xy dx over C = C1 + C2 + C3 + C4,

we get for the four sides respectively

∫

C1

0 +

∫ 1

0

dy +

∫ 0

1

−xdx +

∫

C4

0 =
3

2
.

(1,1)

1

1

R

C

C

C

C

1

2

3

4
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For the double integral,

∫ ∫

R

div F dA =

∫ ∫

R

3xdA =

∫ 1

0

∫ 1

0

3xdydx =
3

2
x2

]1

0

=
3

2
.

4F-5 r = (x2 + y2)1/2 ⇒ rx = 1
2 (x2 + y2)−1/2 · 2x =

x

r
; by symmetry, ry =

y

r
.

To calculate div F, we have M = rnx and N = rny; therefore by the chain rule, and the
above values for rx and ry, we have

Mx = rn + nrn−1x · x

r
= rn + n rn−2x2; similarly (or by symmetry),

Ny = rn + nrn−1y · y

r
= rn + n rn−2y2, so that

div F = Mx + Ny = 2rn + nrn−2(x2 + y2) = rn(2 + n), which = 0 if n = −2.

To calculate curl F, we have by the chain rule

Nx = nrn−1 · x

r
· y; My = nrn−1 · y

r
· x, so that curl F = Nx − My = 0, for all n.

4G. Simply-connected Regions

4G-1 Hypotheses: the region R is simply connected, F = M i + N j has continuous
derivatives in R, and curl F = 0 in R.

Conclusion: F is a gradient field in R (or, M dx + N dy is an exact differential).

a) curl F = 2y − 2y = 0, and R is the whole xy-plane. Therefore F = ∇f in the plane.

b) curl F = −y sinx − x sin y 6= 0, so the differential is not exact.

c) curl F = 0, but R is the exterior of the unit circle, which is not simply-connected;
criterion fails.

d) curl F = 0, and R is the interior of the unit circle, which is simply-connected, so the
differential is exact.

e) curl F = 0 and R is the first quadrant, which is simply-connected, so F is a gradient
field.

4G-2 a) f(x, y) = xy2 + 2x b) f(x, y) = 2
3x3/2 + 2

3y3/2

c) Using Method 1, we take the origin as the starting point and use the straight line
to (x1, y1) as the path C. In polar coordinates, x1 = r1 cos θ1, y1 = r1 sin θ1; we use r as
the parameter, so the path is C : x = r cos θ1, y = r sin θ1, 0 ≤ r ≤ r1. Then

f(x1, y1) =

∫

C

xdx + y dy√
1 − r2

=

∫ r1

0

r cos2 θ1 + r sin2 θ1√
1 − r2

dr

=

∫ r1

0

r√
1 − r2

dr = −
√

1 − r2

]r1

0

= −
√

1 − r1
2 + 1.

Therefore,
xdx + y dy√

1 − r2
= d(−

√

1 − r2).

Another approach: xdx+y dy = 1
2d(r2); therefore

xdx + y dy√
1 − r2

=
1

2

d(r2)√
1 − r2

= d(−
√

1 − r2).

(Think of r2 as a new variable u, and integrate.)
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4G-3 By Example 3 in Notes V5, we know that F =
x i + y j

r3
= ∇

(

−1

r

)

.

Therefore,

∫ (3,4)

(1,1)

= −1

r

]5

√
2

=
1√
2
− 1

5
.

4G-4 By Green’s theorem

∮

C

xy dx + x2 dy =

∫ ∫

R

xdA.

For any plane region of density 1, we have
∫∫

R
xdA = x̄·(area of R), where x̄ is the

x-component of its center of mass. Since our region is symmetric with respect to the y-axis,
its center of mass is on the y-axis, hence x̄ = 0 and so

∫∫

R xdA = 0.

4G-5

a) yes
b) no (a circle surrounding the line segment lies in R, but its interior does not)
c) yes (no finite curve could surround the entire positive x-axis)
d) no (the region does not consist of one connected piece)
e) yes if θ0 < 2π; no if θ0 ≥ 2π, since then R is the plane with (0, 0) removed
f) no (a circle between the two boundary circles lies in R, but its interior does not)
g) yes

4G-6

a) continuously differentiable for x, y > 0; thus R is the first quadrant without the two
axes, which is simply-connected.

b) continuous differentiable if r < 1; thus R is the interior of the unit circle, and is
simply-connected.

c) continuously differentiable if r > 1; thus R is the exterior of the unit circle, and is not
simply-connected.

d) continuously differentiable if r 6= 0; thus R is the plane with the origin removed, and
is not simply-connected.

e) continuously differentiable if r 6= 0; same as (d).

4H. Multiply-connected Regions

4H-1 a) 0; 0 b) 2; 4π c) −1; −2π d) −2; −4π

4H-2 In each case, the winding number about each of the points is given, then the value
of the line integral of F around the curve.

a) (1,−1, 1); 2 −
√

2 +
√

3

b) (−1, 0, 1); −2 +
√

3
c) (−1, 0, 0); −2

d) (−1,−2, 1); −2 − 2
√

2 +
√

3


