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Alternating Series; Absolute vs. Conditional Convergence; Ratio Test; Strategies 

An alternating series is a series of the form 1 2 3 4
1

( 1)n
n

n

b b b b b




         or 

1
1 2 3 4

1

( 1)n
n

n

b b b b b






        where 0nb   for all n. 

The Alternating Series Test simply says that if the size of the terms of an alternating series are decreasing to 
zero, then the series will converge. The main idea of the Alternating Series Test is that if you are alternatively 
adding and subtracting smaller and smaller amounts and if these amounts eventually tend to zero, then the series 
will eventually narrow down to a finite sum. 

Alternating Series Test: Let 
1

( 1)n
n

n

b




  or 1

1

( 1)n
n

n

b






  be an alternating series (where 0nb   for all n). If the 

terms are decreasing in size ( 1n nb b   for all n) and if lim 0nn
b


 , then the alternating series converges. 

Estimating Sums 
If we denote the sum of a convergent series by S, then if we truncate the series after a finite number of terms we 
will get the partial sum Sn. The sum of the infinitely many terms that we omit is called the remainder Rn. 

Alternating Series Remainder Estimate: Suppose 
1

( 1)n
n

n

b




  or 1

1

( 1)n
n

n

b






  is an alternating series with 

decreasing terms and that lim 0nn
b


 . Then 1n n nR S S b    . 

This is true because the eventual sum S will always lie between the nth and (n+1)st partial sums, i.e. 

1 1n n n nS S S S b     . [Draw a picture of this on a number line and this should become clear.] 

Ratio Test for Absolute Convergence: Given any series na , consider the absolute series na  and let 

1lim n

n
n

a
R

a



 . [This may be thought of as the “eventual ratio.”] If this limit exists, then 

(1) If 1R  , then the series is absolutely convergent, i.e. both na  and na  converge. 

(2) If 1R  , then the series is divergent, i.e. both na  and na  diverge. 

(3) If 1R  , then the test is inconclusive. It’s possible that the series could be either divergent, conditionally 
convergent, of absolutely convergent. 

Note: A series na  is conditionally convergent if it is convergent but its absolute series na  is divergent. 

 
Sample Problems 

1. Determine the convergence of 
1

( 1) arccot( )n

n

n




 . 

2. Determine the convergence of 
2

1

( 1) 2n n

n n





 . 

3. Determine the convergence of 
1

1( 1) sin( )n

n
n





  

4. Determine the convergence of 
1

1

( 1)n

n n





  

5. Determine the convergence of 
1

2
1

( 1)

2

n

n
n n






 . 

6. Determine the convergence of 
1

( 7)n

n n





 . 

7. Determine the convergence of 
1

3 1
( 1)

2 1
n

n

n

n








  

8. Estimate 1 1 1
4 9 161    to within 0.001. 

9. Show that the series 
1

( 2)

!

n

n n





  converges. How 

many terms of the series do we need in order to 
estimate the sum of the series with |error| 0.01 . 

10. Suppose 0na   for all 1n  . Is it possible for 

1
n

n

a



  to converge conditionally? 
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11. For what values of p does the series 

1

1

ln( 1)n
p

n

n
n






  converge absolutely? 

12. Determine the convergence of 
1

!

(2 )!n

n

n




 . 

13. Determine the convergence of 

3 2 3 2 3 2 3

1 1 1 1 1 1 1
1

2 3 4 5 6 7 8
        . 

14. Determine the convergence of 
1

!

( 2)!n

n

n



  . 

15. Determine the convergence of 
3 2

2

1

1n n



 
 . 

16. Determine the convergence of 
2

1

arctan( )

1n

n

n



  . 

17. Determine the convergence of 
3

5
1 4n

n

n



  . 

18. Determine the convergence of 
1

1

3n
n n




 . 

19. Determine the convergence of 
1 1 1

1
1 3 1 3 5 1 3 5 7

   
     

 . 

 

Solutions:  
1. The graph of 1arccot( ) cot ( )x x  shows this to 

be a decreasing function which tends to zero as x 
tends to infinity. This is all you need to show 
convergence for an alternating series, so this 
series is convergent. 

2. For the series 
2

1

( 1) 2n n

n n





 , we see that the size of 

the nth term is 
2

2n

nb
n

 . If you look at the ratio 

1 2 2
1

2 2

2 2
2

( 1) 2 ( 1)

n
n

n
n

b n n

b n n


   

 
 for all 2n  , so 

1 2n nb b   for all 2n  , and these terms are 

obviously growing bigger with n, so the series 
must be divergent. Also, by the Ratio Test for 
absolute convergence, we have 

1lim 2 1n

n
n

b
R

b




 
   

 
, so the series is divergent. 

3. For the series 
1

1( 1) sin( )n

n
n





 , the limit 

1lim lim sin( )n
n n

a n 
  does not exist, so the series is 

divergent. 

4. This is an alternating p-series with 1 2p  . The 
terms are decreasing to zero, so the alternating 
series converges. The absolute series is divergent, 
so the series is conditionally convergent. 

5. For this series, consider its absolute series and 
use the Comparison Test with the (larger) series 

1

1

2n
n




 . This is a convergent geometric series, so 

the given series is absolutely convergent. 

6. If you consider the absolute series, an easy 
calculation will show that the terms are not only 
not tending toward zero, they are tending toward 
infinity, so the series diverges (quickly). 

7. For the series 
1

3 1
( 1)

2 1
n

n

n

n








 , the absolute value 

of the terms tend toward 3 2 . By the Ration Test, 
the series is divergent. 

8. 11 1 1
4 9 16 2

1

1
1 ( 1)n

n n






      . By the 

Alternating Series Remainder Estimate, since the 
terms are decreasing in size to zero, we need to 

have 1 2

1 1
.001

( 1) 1000nb
n   


. This will be 

true whenever 1 1000n    or 

1000 1 30.6n    . So 31n   terms will be 
adequate to ensure this degree of accuracy. 

9. First, use the Ratio Test to show that the series 

1

( 2)

!

n

n n





  is absolutely convergent. [The eventual 

ratio tends toward 0.] Therefore the terms will be 
decreasing after some point. [Actually, they’ll be 
decreasing after the first two terms.] So we need 
to ensure that the 1 0.01nb   . Trying a few terms, 

we quickly see that 7n   will be the first place 
where this becomes true, so 7 terms of this 
alternating series are required to achieve this 
degree of accuracy. 
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10. No. For a series with positive terms, either the 
series converges (absolutely) or it diverges. 

11. For the series 1

1

ln( 1)n
p

n

n
n






 , consider its 

absolute series 
1

ln
p

n

n
n




 . Use the Integral Test to 

show that this series is convergent when 1p   
and divergent when 1p  . [Note: Calculating the 
integral is best done by integration by parts for 
the 1p   case and by a substitution for the 1p   
case.] 

12. This one’s an obvious candidate for the Ratio 

Test. Since 
!

(2 )!n

n
a

n
 , we calculate 

1

( 1)! ( 1)! ( 1) !

(2( 1))! (2 2)! (2 2)(2 1)(2 )!n

n n n n
a

n n n n n

  
  

   

 and 1 ( 1) !(2 )! 1

(2 2)(2 1)(2 )! ! 2(2 1)
n

n

a n n n

a n n n n n
 

 
  

. 

Therefore 1 1
lim lim 0 1

2(2 1)
n

n n
n

a

a n


 
  


, so the 

absolute series converges and the series is 
absolutely convergent. 

13. The series 

3 2 3 2 3 2 3

1 1 1 1 1 1 1
1

2 3 4 5 6 7 8
         doesn’t 

have a single expression for its nth term, but it is 
an alternating series, and its terms are 
approaching zero. However, they’re not strictly 
decreasing in size so the Alternating Series Test 
is not applicable. However, the absolute series is 
the sum of two convergent series that are both 
comparable to p-series (with 2p   and 3p  ) 
with the terms intertwined. Specifically,  the 
absolute series is 

3 2 3 2 3 2 3

2 2 2

3 3 3 3

2 3
1 1

1 1 1 1 1 1 1
1

2 3 4 5 6 7 8
1 1 1

1
3 5 7

1 1 1 1

2 4 6 8
1 1

(2 1) (2 )n nn n

 

 

       

    

    

 
 






 

If we apply the Limit Comparison Test to both of 
them, it’s easy to see that they both converge, so 
the original series is absolutely convergent. 

14. 

1 1 1

! ! 1

( 2)! ( 2)( 1) ! ( 2)( 1)n n n

n n

n n n n n n

  

  

 
        

This series is comparable (using the Limit 
Comparison Test) to a p-series with 2p  , so it’s 
absolutely convergent. 

15. Again, using the Limit Comparison Test, the 

series 
3 2

2

1

1n n



 
  is comparable to a p-series with 

2 3 1p   , so it’s divergent. 

16. For the series 
2

1

arctan( )

1n

n

n



  , note that all the 

terms are positive and that the numerator never 
exceeds 2 . Use the Comparison Test with the 

(larger) series 
2 2 2

1 1 1

2 1 1

1 2 1 2n n nn n n

    

  

 
    . 

Since the latter series is a convergent p-series 
with 2p  , the original series is absolutely 
convergent. 

17. The series 
3

5
1 4n

n

n



   is comparable (using the 

Limit Comparison Test) to a p-series with 
2p  , the given series is absolutely 

convergent. 

18. The series 
1

1

3n
n n




  is an obvious candidate for 

the Ratio Test because of the exponential 
function. We calculate 

1
1

3 1
lim lim lim 1

( 1)3 ( 1)3 3

n
n

nn n n
n

a n n

a n n


  
   

 
. 

So the series is absolutely convergent. 

19. For the series 
1 1 1

1
1 3 1 3 5 1 3 5 7

   
     

 , we 

calculate the ratio of successive terms directly: 

2

1

1

3

a

a
 , 3

2

1

5

a

a
 , 4

3

1

7

a

a
 , 1 1

2 1
n

n

a

a n
 


 . 

Therefore 1 1
lim lim 0 1

2 1
n

n n
n

a

a n


 
  


, so the 

series is (absolutely) convergent. 
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Strategies for Determining Convergence or Divergence of a Series 
1. If the series is of the form 1 pn , then it is a p-series. The series converges for 1p   and diverges for 

1p  . 

2. If the series is of the form nar  for some constant r, then it is a geometric series. It converges for 1r   

and diverges for 1r  . 

3. If the series is similar to (comparable to) a p-series or a geometric series, consider using the Comparison 
Test or the Limit Comparison Test. 

4. If lim 0n
n

a


 , then the series diverges (by the Divergence Test). 

5. If the series is of the form 
1

( 1)n
n

n

b




  or 1

1

( 1)n
n

n

b






  where 0nb   for all n, consider using the Alternating 

Series Test. If the terms are decreasing in size ( 1n nb b   for all n) and if lim 0n
n

b


 , then the alternating 

series converges. You might also consider using the Ratio Test for Absolute Convergence. 
6. If the series involves products, factorial expressions, or exponential functions (constant raised to the nth 

power or a power that contains n), consider using the Ratio Test. 

7. If the nth term of the series ( )na f n  is such that the integral 
1

( )f x dx


  is relatively easy to evaluate, then 

you may want to consider using the Integral Test, assuming the hypotheses of the test are satisfied. 
8. Is the series a telescoping series or can it be put in the form of a telescoping series after using partial 

fractions to re-express the nth term of the series? If so, convergence or divergence can be determined by 
directly computing an expression for the nth partial sum of the series and finding the limit of the partial sums 
of the series. 

 
Additional Practice Problems 

1. 
2

1

1

n

n

n n






  

2. 
1

3
1

( 3)

2

n

n
n





  

3. 
2

1

lnn n n




  

4. 
1

5

3 4

k

k k
k



   

5. 
2

1

3

!

n

n

n

n




  

6. 
2

1

n

n

ne





  

7. 

2

1 1

n

n

n

n





 
  

  

8. 
1

tan(1 )
n

n



  

9. 
2

3 2
1

1

2 5n

n

n n






   

10. 1

1

( 1) 2n n

n





  

11. 
1

1 1

2n n n





   
  

 


