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Math 18.02 – Notes on limits, continuity, differentiability and linear approximation 

This lecture explores some of the more technical aspects of limits, continuity, and differentiability of functions 
of two (or more) variables. In addition, for differentiable functions we’ll explore a variety of results growing 
from the idea of linear approximation in the vicinity of a given point, including error estimation, increments and 
differentials, rate of change along a parameterized curve, gradients, and the directional derivative. 

Tangent plane and linear approximation 
We define the partial derivatives of ( , )f x y  as follows: 
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∂ + ∆ 0 = = ∂ ∆ 
 is the partial derivative of f with respect to x 
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 is the partial derivative of f with respect to y 

In order for these derivatives to exist at a given point 0 0( , )x y , it’s necessary that the cross-sectional curves 
corresponding to varying just one variable at a time have well-defined slopes at this point. We will rarely need 
to use this formal definition to calculate partial derivatives. By simply understanding what the definitions are 
really saying, we can just use familiar rules for differentiation by literally “treating the other variables as though 
constant”. 

Taking a vector approach with the parameterization ( , ) , , ( , )x y x y f x y=r  to produce 1,0, xf
x

∂
=

∂
r

 as a 

tangent vector to the cross-section where only x is varied; and 0,1, yf
y

∂
=

∂
r

 as a tangent vector to the cross-

section where only y is varied, then if the graph has a well-defined tangent plane the cross product of these two 
tangent vectors to the graph surface will give a normal vector to the graph at any point 0 0( , )x y  on the graph: 
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∂ ∂
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We can then use this normal vector and the point 0 0 0 0( , , ( , ))x y f x y  on the graph to get an equation for a tangent 

plane to the graph: 0 0 0 0 0 0 0 0( , ), ( , ),1 , , ( , ) 0x yf x y f x y x x y y z f x y0 0 ⋅ 0 0 0 =  or, after solving for z:  

0 0 0 0 0 0 0 0( , ) ( , )( ) ( , )( )x yz f x y f x y x x f x y y y= + 0 + 0  (equation for tangent plane to graph) 

Intuitively, a tangent plane to a graph is that uniquely determined plane that best approximates the graph at a 
given point. That is: 

0 0 0 0 0 0 0 0( , ) ( , ) ( , )( ) ( , )( )x yf x y f x y f x y x x f x y y y≅ + 0 + 0  (linear approximation for ( , )x y  near 0 0( , )x y ) 

Heuristic definition: A function ( , )f x y  is called differentiable at a point 0 0( , )x y  if the graph of ( , )f x y  has a 

well-defined tangent plane at 0 0 0 0( , , ( , ))x y f x y  that well-approximates the graph for ( , )x y  near 0 0( , )x y . 

This definition raises a lot of questions. For example, what constitutes a good approximation? What does it 
mean for ( , )x y  to be near 0 0( , )x y , i.e. how close is close enough? How shall distance be measured? In order to 
better address these questions, we need to review the idea of the limit of a function. 

Limit of a function at a point 
The idea of limits is something that should be familiar to anyone who has experience a course in single variable 
Calculus. It can be understood either heuristically or using a technical definition. The basic idea is that 
lim ( )
x a

f x L
→

=  if the values ( )f x  unambiguously approach the value L as x approaches a. What exactly does this 
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mean? This can alternatively be expressed by saying that when x is close to a, then necessarily ( )f x  is close to 

L. In the case of a function of one variable, the notion of “close” straightforward, namely that x a0  is small. 

So lim ( )
x a

f x L
→

=  means that if x a0  is small, then necessarily ( )f x L0  should be small. This continues to 

evade the question of what is meant by “near” and “small”, but this is because these are relative measures. What 
is “near” to one person might still be “far” to someone with more exacting standards, so how do we resolve this 
dilemma? To address this, we say phrase the idea in the following more technical definition: 

Definition: lim ( )
x a

f x L
→

=  if given an allowable error 0ε >  (level of accuracy), there is a precision 0δ >  such 

that whenever 0 x a< 0 < δ , then necessarily ( )f x L0 < ε . 

It should be noted that the required precision δ  depends very much of the allowable accuracy ε . 

 
Function with a limit as x a→  

 
Function without a limit as x a→  

It’s worth noting that the specific value ( )f a  is irrelevant and it doesn’t even have to be defined. All that 
matters is that when x is near a, the values ( )f x  have to be unambiguous near something. In the right figure, 
this is clearly not the case and the function has no limit as x a→  (though it does have left-hand and right-hand 
limits in this example). When the limits and values coincide, we say that a function is continuous. 

Definition: A function ( )f x  is called continuous at a  if (1) lim ( )
x a

f x
→

 exists, (2) ( )f a  is defined, and (3) 

lim ( ) ( )
x a

f x f a
→

= . We say that a function is continuous on an interval [ , ]a b  if it is continuous at every point in 

this interval. 

How might this work for a function of two or more variables? The complication here is that proximity is a 
little more complicated in R2 and higher dimensions. That said, the idea is still the same. 

Heuristically, we say that 
0 0( , ) ( , )

lim ( , )
x y x y

f x y L
→

=  if whenever ( , )x y  is close to 0 0( , )x y , then ( , )f x y  should be 

close to L. If we choose a consistent way to measure of distance d between points (called a metric), then we 
might say that whenever 0 0(( , ), ( , ))d x y x y  is small then the difference ( , )f x y L0  should be small. There are, 

in fact, different ways to measure the distance between point. We usually default to the Euclidean distance, i.e. 
2 2

0 0 0 0(( , ), ( , )) ( ) ( )d x y x y x x y y= 0 + 0 , but we could also use the “Manhattan metric” 

0 0 0 0(( , ), ( , ))Md x y x y x x y y= 0 + 0 , i.e. the distance determined by counting “how many avenues over plus 

how many streets up” as more appropriate than “as the crow flies”. It doesn’t fundamentally matter as long as 
there is some consistent way of capturing the idea of proximity. With this terminology, we offer the following 
definition: 
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Definition: 
0 0( , ) ( , )

lim ( , )
x y x y

f x y L
→

=  if given an allowable error 0ε >  (level of accuracy), there is a precision 0δ >  

such that whenever 0 00 (( , ), ( , ))d x y x y< < δ , then necessarily ( , )f x y L0 < ε . 

Though it’s good to have a technical definition, it’s also important to know how to use it. More often than not, 
we just talk our way through a limit without getting ensconced in overly technical details. 

Example: What is 
2 2( , ) (2,1)

lim
x y

xy

x y→

 
 + 

? 

Solution: When x is near 2 and y is near 1, the numerator xy  will be approximately 2, and the denominator 

2 2x y+  will be approximately 2 22 1 5+ = , so the values of the function 
2 2

xy

x y+
 will be approximately 

2

5
. 

Therefore 
2 2( , ) (2,1)

2
lim

5x y

xy

x y→

 
= + 

. In an example like this there’s no need to get more technical than this. On the 

other hand, consider the following: 

Example: What is 
2 2( , ) (0,0)

lim
x y

xy

x y→

 
 + 

? 

Solution: This time, when ( , ) (0,0)x y ≈  both the numerator and denominator are approximately zero, so we 

cannot directly determine the values of 
2 2

xy

x y+
. One idea is to approach (0,0)  along specific curves. If we 

consider only lines through the origin, we find the following: 

Along the x-axis, we have 0y = , so 
2 2 2

0
0

xy

x y x
= =

+
 at all points, so the limit along this line will be 0. 

Along the y-axis, we have 0x = , so 
2 2 2

0
0

xy

x y y
= =

+
 at all points, so the limit along this line will also be 0. 

At this point you might begin to think that 
2 2( , ) (0,0)

lim 0
x y

xy

x y→

 
= + 

, but if we instead approach the origin along 

the line y x= , we’ll have that 
2

2 2 2( , ) (0,0) 0 0

1 1
lim lim lim

2 2 2x y x x

xy x

x y x→ → →

    = = =    +     
. Therefore, in any small 

neighborhood of (0,0)  this function will take on values that are far apart and there can be no limit. In fact, if 

we approach (0,0)  along the line y mx=  the function will have the value 
21

m

m+
, i.e. it takes on different 

(constant) values on different lines all passing through the origin. 

Example: Show that 
2

4 2( , ) (0,0)
lim

x y

x y

x y→

 
 + 

 does not exist. 

Solution: In this example, along any line y mx=  through the origin, the limit becomes 
2

4 2 2 2 20 0
lim lim 0
x x

x mx mx

x m x x m→ →

   = =   + +  
, so we might be tempted to conclude that 

2

4 2( , ) (0,0)
lim 0

x y

x y

x y→

 
= + 

. However, 

if we were to instead approach the origin along the parabolic path where 2y x= , the limit would be 
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2 2

4 4( , ) (0,0) ( , ) (0,0)

1 1
lim lim

2 2x y x y

x x

x x→ →

   = =   +   
. Even if the limit is equal to 0 along every line through the origin, this 

does not guarantee that the limit is actually 0. 

Perhaps the best way to actually prove that a limit exists is to relate as much of the function to distance as 
possible. The following example illustrates this. 

Example: Prove that 
2

2 2( , ) (0,0)
lim 0

x y

x y

x y→

 
= + 

. 

Solution: As the previous example illustrated, it’s not sufficient to show that this limit is equal to 0 along every 
line through the origin, though we might first try this to convince ourselves that the limit might be equal to 0. 
Using the technical definition of limit, we need to show that if the distance 

2 2(( , ), (0,0))d x y x y= +  is small then this will guarantee that the difference 
2 2

2 2 2 2
0

x y x y

x y x y
0 =

+ +
 will be small. Referring to the figure, we observe that 

2 2 2 2 2 2 22
2 2

2 2 2 2 2 2 2 2

( ) ( )x y x y y x y x yx y
x y d

x y x y x y x y

+ + +
= ≤ ≤ = + =

+ + + +
, so if 

2 2x y d+ =  is small, then 
2

2 2
0

x y
d

x y
0 ≤

+
 will also be small, so 

2

2 2( , ) (0,0)
lim 0

x y

x y

x y→

 
= + 

. [δ = ε  in this case.] 

Differentiability of ( , )f x y  at a point 
We have already established that if the graph of ( , )f x y  has a well-defined tangent plane at 0 0 0 0( , , ( , ))x y f x y , 

then that tangent plane will have the equation 0 0 0 0 0 0 0 0( , ) ( , )( ) ( , )( )x yz f x y f x y x x f x y y y= + 0 + 0  and for 

points ( , )x y  near 0 0( , )x y  we will have the linear approximation: 

0 0 0 0 0 0 0 0( , ) ( , ) ( , ) ( , )( ) ( , )( )x yf x y L x y f x y f x y x x f x y y y≅ = + 0 + 0 . 

The function ( , )L x y  is called the linearization of f  at the point 0 0( , )x y . Differentiability can be understood 

as saying that for points ( , )x y  near 0 0( , )x y , the difference between the actual value ( , )f x y  and the 

approximate value ( , )L x y  will be very small relative to the distance between ( , )x y  and 0 0( , )x y . As the 
distance grows we would expect this gap to grow, but for nearby points we would like to capture the idea that it 
should be negligible. Technically, we might capture this idea as follows: 

Definition: A function ( , )f x y  is differentiable at a point 0 0( , )x y  if 
0 0( , ) ( , )

0 0

( , ) ( , )
lim 0

(( , ), ( , ))x y x y

f x y L x y

d x y x y→

 0 
= 

 
. 

All this really means is that the tangent plane approximation is a good approximation for the (smooth) graph 
surface. It should be pointed out that there are examples of functions ( , )f x y  where both partial derivatives 

0 0( , )xf x y  and 0 0( , )yf x y  exist but the function still fails to be differentiable, i.e. the existence of partial 

derivatives is not sufficient to ensure differentiability. 

However, if a function is differentiable, then the linear approximation 

0 0 0 0 0 0 0 0( , ) ( , ) ( , )( ) ( , )( )x yf x y f x y f x y x x f x y y y≅ + 0 + 0  will be valid for ( , )x y  near 0 0( , )x y . 
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This can be expressed in several alternative forms. For example, if we write this as 

0 0 0 0 0 0 0 0( , ) ( , ) ( , )( ) ( , )( )x yf x y f x y f x y x x f x y y y0 ≅ 0 + 0  and let 0 0( , ) ( , )f f x y f x y∆ = 0  and 0x x x∆ = 0  and 

0y y y∆ = 0 , then using the alternate notation 0 0( , )x

f
f x y

x

∂
=

∂
 and 0 0( , )y

f
f x y

y

∂
=

∂
 we can write: 

f f
f x y

x y

∂ ∂
∆ ≅ ∆ + ∆

∂ ∂
 (increment form of linear approximation) 

For functions of n variables 1( , , )nf x x , this construction extends to the more general statement: 

1
1

n
n

f f
f x x

x x

∂ ∂
∆ ≅ ∆ + + ∆

∂ ∂
  

Where the partial derivative 
i

f

x

∂
∂

 now presumes that all other variables are treated as though constant when 

taking this derivative. In particular, for a function of three variables ( , , )f x y z  we would have that: 

f f f
f x y z

x y z

∂ ∂ ∂
∆ ≅ ∆ + ∆ + ∆

∂ ∂ ∂
 

This increment notation can be idealized by considering only the difference in the values of the function as we 
remain on the approximating tangent plane (or higher order analogue for functions of more than two variables. 
In this case we identify dx x= ∆  and dy y= ∆  (and dz z= ∆  for a function of three variables) and we express the 
differential as: 

f f
df dx dy

x y

∂ ∂
= +
∂ ∂

 for a function ( , )f x y  or 
f f f

df dx dy dz
x y z

∂ ∂ ∂
= + +
∂ ∂ ∂

 for a function ( , , )f x y z  

The differential notation and the increment notation are basically capturing the same idea with the differential 
giving the linear approximation for the actual incremental change in the values of the given function as the 
independent variable in the domain are tweaked. 

 
Notes by Robert Winters 

 


